
Event Processing X11/1998-28
August 10, 1998

X11/1998-28 

MUMPS Development Committee. 
Extension to the MDC Standard 

Type A Release of the MUMPS Development Committee 

Event Processing 
June 28, 1998 

Produced by the MDC Subcommittee #15 
Programming Structures 

Art Smith, Chairman 
MuMPS Development Committee 

Wally Fort, Chairman 
Subcommittee #15 

The reader is hereby notified that the following MDC specification has been approved by 
the MUMPS Development Committee but that it may be a partial specification that relies on 
information appearing in many parts of the MDC Standard. This specification is dynamic in 
nature, and the changes reflected by this approved change may not correspond to the latest 
specification available. 

Because of the evolutionary nature of MDC specifications, the reader is further reminded 
that changes are likely to occur in the specification released, herein, prior to a complete 
republication of the MDC Standard. 

© Copyright 1998 by the MUMPS Development Committee. This document may be 
reproduced in any form so long as acknowledgment of the source is made. 

Anyone reproducing this release is requested to reproduce this introduction. 
Identification of the Proposed Change

Event Processing X11/1998-28
August 10, 1998

X11/1998-28 

MUMPS Development Committee. 
Extension to the MDC Standard 

Type A Release of the MUMPS Development Committee 

Event Processing 
June 28, 1998 

Produced by the MDC Subcommittee #15 
Programming Structures 

Art Smith, Chairman 
MuMPS Development Committee 

Wally Fort, Chairman 
Subcommittee #15 

The reader is hereby notified that the following MDC specification has been approved by 
the MUMPS Development Committee but that it may be a partial specification that relies on 
information appearing in many parts of the MDC Standard. This specification is dynamic in 
nature, and the changes reflected by this approved change may not correspond to the latest 
specification available. 

Because of the evolutionary nature of MDC specifications, the reader is further reminded 
that changes are likely to occur in the specification released, herein, prior to a complete 
republication of the MDC Standard. 

© Copyright 1998 by the MUMPS Development Committee. This document may be 
reproduced in any form so long as acknowledgment of the source is made. 

Anyone reproducing this release is requested to reproduce this introduction. 
Identification of the Proposed Change



Event Processing X11/1998-28
August 10, 1998

1. Title

Event Processing

1.1. MDC Proposer and Sponsor

Arthur B. Smith
Emergent Technologies
4500 County Road 351
Fulton, MO 65251
Voice: (573)882-2666 (weekdays)
Voice: (573)642-8802 (weekends/evenings)
Fax: (573)884-5444
e-mail: SmithAB@missouri.edu
e-mail: Emergent@sockets.net 

Subcommittee 15, Task Group 4
Event Processing
Chair: Keith Snell

1.2. Motion

This document (as X11/SC15/1998-6) was approved as MDC Type A at the June 1998 meeting in Boston, MA.

1.3. History

August, 98 X11/1998-28 <This document> Final form (updated history, motion, and 
discussion, only.

June, 98 X11/SC15/1998-6 History updated. Approved as MDC-A 14:14

March, 98 X11/SC15/TG4/98-1 Incorporated changes approved at the September 97 meeting. 
Approved with SC-A status 18:0:2.

September, 97 X11/SC15/TG4/97-4 Clarified and extended to meet TG and SC recommendations. 
Modified in Task Group to change timer behavior and correct 
typos. Approved as replacement SC-B. 22:1:2

March, 97 X11/SC15/TG4/97-1 Extended to meet TG and SC recommendations, adopted as 
replacement SC-B 20:0:4

September, 96 X11/SC15/TG4/96-1 Initial proposal, brought forward from task group. Raised to SC-B
status: 23:2:5

1991-1995 <various> A number of proposals discussed event processing. These were 
examined prior to writing this document but are not direct 
predecessors. See Section 6 for a list of these documents.

1.4. Dependencies

2. Justification of the Proposed Change

2.1. Needs

Much of modern programming is based on "event driven" programming. Graphical user interfaces require 
event driven programming. Messaging techniques in object oriented programming require event driven 
programming. Network protocols requires event driven programming. The ability to handle events in both 

Event Processing X11/1998-28
August 10, 1998

1. Title

Event Processing

1.1. MDC Proposer and Sponsor

Arthur B. Smith
Emergent Technologies
4500 County Road 351
Fulton, MO 65251
Voice: (573)882-2666 (weekdays)
Voice: (573)642-8802 (weekends/evenings)
Fax: (573)884-5444
e-mail: SmithAB@missouri.edu
e-mail: Emergent@sockets.net 

Subcommittee 15, Task Group 4
Event Processing
Chair: Keith Snell

1.2. Motion

This document (as X11/SC15/1998-6) was approved as MDC Type A at the June 1998 meeting in Boston, MA.

1.3. History

August, 98 X11/1998-28 <This document> Final form (updated history, motion, and 
discussion, only.

June, 98 X11/SC15/1998-6 History updated. Approved as MDC-A 14:14

March, 98 X11/SC15/TG4/98-1 Incorporated changes approved at the September 97 meeting. 
Approved with SC-A status 18:0:2.

September, 97 X11/SC15/TG4/97-4 Clarified and extended to meet TG and SC recommendations. 
Modified in Task Group to change timer behavior and correct 
typos. Approved as replacement SC-B. 22:1:2

March, 97 X11/SC15/TG4/97-1 Extended to meet TG and SC recommendations, adopted as 
replacement SC-B 20:0:4

September, 96 X11/SC15/TG4/96-1 Initial proposal, brought forward from task group. Raised to SC-B
status: 23:2:5

1991-1995 <various> A number of proposals discussed event processing. These were 
examined prior to writing this document but are not direct 
predecessors. See Section 6 for a list of these documents.

1.4. Dependencies

2. Justification of the Proposed Change

2.1. Needs

Much of modern programming is based on "event driven" programming. Graphical user interfaces require 
event driven programming. Messaging techniques in object oriented programming require event driven 
programming. Network protocols requires event driven programming. The ability to handle events in both 

mailto:SmithAB@missouri.edu
mailto:Emergent@sockets.net


Event Processing X11/1998-28
August 10, 1998

synchronous and asynchronous paradigms is now essential. 

There are two models for event processing: synchronous and asynchronous. In the synchronous model, often 
used for graphical user interfaces, the control of the program is turned over entirely to the incoming events . 
The program runs an "event loop" which processes the incoming events one at a time. When each event is 
processed, the event loop waits for the next event. No events are processed except when control is in the event 
loop - events are not interruptable. This is the model used in the MWAPI (ESTART starts the event loop, and 
ESTOP stops it). 

In the asynchronous model, program control follows normal behavior until an event occurs. At that time 
normal flow is interrupted and the event handler processes the event. When the event has been processed the 
control returns to the point at which it was interrupted. Because not all sections of processing can be 
interrupted by all types of events, it is usually necessary to allow selected events to be blocked from 
interrupting critical sections of programs. When the block is removed, the pending events are processed. 

2.2. Existing Practice in the Area of the Proposed Change

Xl 1.6, the M Windowing API introduced the ESTART and ESTOP commands and the ^$EVENT ssvn to 
handle event processing in a synchronous model. These commands allow the windowing system to respond to 
a number of special events related to user interaction with the windowing s ystem and other occurrences (e.g., 
timers). 

Error Processing provides a specialized case of asynchronous event processing . Because error conditions can 
be intentionally generated by setting $ECODE non-empty, this has been used in some cases to provide event 
processing. This can be ungainly, however, as error processing was not designed to handle generalized event 
processing. 

3. Description of the Proposed Change

3.1. General Description of the Proposed Change

The ESTA[RT] and ESTO[P] commands of the X11.6 MWAPI standard are added to the X11.1 standard with 
little change. The ETR[IGGER] command is also added, but with some (backwards compatible) modifications.
In addition, four additional commands (ASTA[RT], ASTO[P], AB[LOCK] and AUNB[LOCK]) are added to 
handle asynchronous event processing. 

The ASTA[RT] command is used to enable asynchronous event processing. When invoked without arguments, 
all events are enabled. An argument list can be used to specify that only selected events are enabled, using 
either a selective or exclusive form. Enabling an event which is already enabled is not an error, and has no 
effect. Events may be enabled which have not been registered by placing entries in ^ $J[OB]. Enabled but 
unregistered events are ignored until such time as they are registered. 

The ASTO[P] command is used to disable asynchronous event processing. When invoked without arguments, 
all events are disabled. An argument list can be used to specify that only selected events are disabled, using 
either a selective or exclusive form. Disabling an event which is not enabled is not an error and has no effect. 
Events may be disabled regardless of whether they are registered in ^ $J[OB]. Disabled events, whether 
registered or not, are ignored.

The AB[LOCK] command is used to temporarily block processing of selected events during critical sections. 
Events which occur while blocked will be queued and then processed when. the block is removed by the 
AUNB[LOCK] command. There are up to two queues for pending events for each process - one for 
synchronous events and a separate one for asynchronous events. The number of events which can be saved in 
these queue is system dependent. Each system must be able to store at least one pending event in each queue. 

Event Processing X11/1998-28
August 10, 1998

synchronous and asynchronous paradigms is now essential. 

There are two models for event processing: synchronous and asynchronous. In the synchronous model, often 
used for graphical user interfaces, the control of the program is turned over entirely to the incoming events . 
The program runs an "event loop" which processes the incoming events one at a time. When each event is 
processed, the event loop waits for the next event. No events are processed except when control is in the event 
loop - events are not interruptable. This is the model used in the MWAPI (ESTART starts the event loop, and 
ESTOP stops it). 

In the asynchronous model, program control follows normal behavior until an event occurs. At that time 
normal flow is interrupted and the event handler processes the event. When the event has been processed the 
control returns to the point at which it was interrupted. Because not all sections of processing can be 
interrupted by all types of events, it is usually necessary to allow selected events to be blocked from 
interrupting critical sections of programs. When the block is removed, the pending events are processed. 

2.2. Existing Practice in the Area of the Proposed Change

Xl 1.6, the M Windowing API introduced the ESTART and ESTOP commands and the ^$EVENT ssvn to 
handle event processing in a synchronous model. These commands allow the windowing system to respond to 
a number of special events related to user interaction with the windowing s ystem and other occurrences (e.g., 
timers). 

Error Processing provides a specialized case of asynchronous event processing . Because error conditions can 
be intentionally generated by setting $ECODE non-empty, this has been used in some cases to provide event 
processing. This can be ungainly, however, as error processing was not designed to handle generalized event 
processing. 

3. Description of the Proposed Change

3.1. General Description of the Proposed Change

The ESTA[RT] and ESTO[P] commands of the X11.6 MWAPI standard are added to the X11.1 standard with 
little change. The ETR[IGGER] command is also added, but with some (backwards compatible) modifications.
In addition, four additional commands (ASTA[RT], ASTO[P], AB[LOCK] and AUNB[LOCK]) are added to 
handle asynchronous event processing. 

The ASTA[RT] command is used to enable asynchronous event processing. When invoked without arguments, 
all events are enabled. An argument list can be used to specify that only selected events are enabled, using 
either a selective or exclusive form. Enabling an event which is already enabled is not an error, and has no 
effect. Events may be enabled which have not been registered by placing entries in ^ $J[OB]. Enabled but 
unregistered events are ignored until such time as they are registered. 

The ASTO[P] command is used to disable asynchronous event processing. When invoked without arguments, 
all events are disabled. An argument list can be used to specify that only selected events are disabled, using 
either a selective or exclusive form. Disabling an event which is not enabled is not an error and has no effect. 
Events may be disabled regardless of whether they are registered in ^ $J[OB]. Disabled events, whether 
registered or not, are ignored.

The AB[LOCK] command is used to temporarily block processing of selected events during critical sections. 
Events which occur while blocked will be queued and then processed when. the block is removed by the 
AUNB[LOCK] command. There are up to two queues for pending events for each process - one for 
synchronous events and a separate one for asynchronous events. The number of events which can be saved in 
these queue is system dependent. Each system must be able to store at least one pending event in each queue. 



Event Processing X11/1998-28
August 10, 1998

Storage of multiple events may be supported by the system in one or both queues. Blocked events which have 
been stored are to be processed in the order in which they occurred when they are unblocked. Blocked 
events which are not stored are lost. The events to block or unblock are specified using an argument list, in 
either an inclusive or exclusive form. Priority levels for events are not defined in this proposal. 

ABLOCK works like the incremental form of LOCK - it increments a count of the blocks on the events. A zero
value for the count indicates the event is not blocked. A positive value for the count indicates the event is 
blocked. The count cannot become negative. Calls to AUNBLOCK decrement the count (except that the count 
cannot be less than zero). Note that a routine which calls AUNBLOCK more times than it called ABLOCK 
may inadvertently expose an "outer" routine to unexpected interrupts with surprising results. 

The ETR[IGGER] command is extended to allow its argument, an especref, to be an expression evaluating to 
^$W[INDOW](espec) as currently defined in the MW API, or to ^$J[OB](processid,"EVENT',expr V evclass, 
evid) where evclass and evid identify a registered synchronous or asynchronous event. In this way, it can be 
used to generate event conditions for events not associated with windows, elements or menu choices. Use of a 
processid other than the current job's processid may be restricted in some or all cases by the M vendor. This 
restricted use does not create an error condition, but also does not generate an event. 

An M process registers events by creating an entry in ^$J[OB]. 'These entries are of the form ^$J[OB]
(processid, "EVENT', evclass, evid), where the value of this node is the entryref of the event handler. As in the 
MW API, ^$E[VENT] may contain information about the events as they occur. 

Asynchronous event handling routines implicitly invoke an argumentless ABLOCK when they are entered as 
the result of an event. When the event handler is exited, there is an implicit AUNBLOCK of all events. 

Event classes which may be registered are COMM, HALT, IPC, INTERRUPT, POWER, TIMER, USER and 
vendor defined events beginning with Z. All other event classes are reserved for future use. Each of these event
classes may be processed using either the synchronous or asynchronous event model. 

COMM events use device numbers as the evid values. Not all devices necessarily generate events. What 
devices generate COMM events, and under what circumstances, is determined by the M vendor. 

HALT events are generated when a MUMPS job is halted, either by an explicit HALT command or by a 
vendor-specified job termination utility. The evid value for a job halted by an explicit HALT command is 1 
(the digit "one"). Additional evid values maybe specified by vendors for jobs which are halted by other means. 

IPC events use processids as the evid values, and are used for interprocess communication. The ETRIGGER 
command generates an event coming from the current process (i.e ., the one executing the ETRlGGER 
command). The processid specified in the argument to the ETRlGGER command must be the current 
processid. If an evid other than the current processid is provided in ETRlGGER, an error occurs. The event 
may be received by any process which has registered this event (i.e., any process which has created the 
appropriate node(s) below its ^$JOB(processid, "EVENT", “IPC'') node. See 3.2 (Annotated Examples of Use)
for a clarifying example. 

INTERRUPT events are generated when a user interrupts a running job in some vendor-specified manner 
(typically by typing Ctrl-C). The range of evid values is specified by the individual vendors. 

POWER events, if supported, are generated to indicate imminent power interruption. The range of evid values 
is specified by the individual vendors. 

TIMER events use ^$EVENT("EVENTDEF",”TIMER'',TIMERID,''INTERVAL") to identify the running time 
remaining before or elapsed time after the timer event (in seconds). It also uses ^$EVENT ("EVENTDEF", 
''TIMER'', TIMERID," ACTIVE") and ^$EVENT ("EVENTDEF",''TIMER'',TIMERID,''AUTO'') to control 
the state of the timer. The timer is started (or restarted) by setting the ACTIVE value non-zero. When the timer
runs out (i.e., the "INTERVAL" node goes from a positive to a non-positive value) the timer event occurs 

Event Processing X11/1998-28
August 10, 1998

Storage of multiple events may be supported by the system in one or both queues. Blocked events which have 
been stored are to be processed in the order in which they occurred when they are unblocked. Blocked 
events which are not stored are lost. The events to block or unblock are specified using an argument list, in 
either an inclusive or exclusive form. Priority levels for events are not defined in this proposal. 

ABLOCK works like the incremental form of LOCK - it increments a count of the blocks on the events. A zero
value for the count indicates the event is not blocked. A positive value for the count indicates the event is 
blocked. The count cannot become negative. Calls to AUNBLOCK decrement the count (except that the count 
cannot be less than zero). Note that a routine which calls AUNBLOCK more times than it called ABLOCK 
may inadvertently expose an "outer" routine to unexpected interrupts with surprising results. 

The ETR[IGGER] command is extended to allow its argument, an especref, to be an expression evaluating to 
^$W[INDOW](espec) as currently defined in the MW API, or to ^$J[OB](processid,"EVENT',expr V evclass, 
evid) where evclass and evid identify a registered synchronous or asynchronous event. In this way, it can be 
used to generate event conditions for events not associated with windows, elements or menu choices. Use of a 
processid other than the current job's processid may be restricted in some or all cases by the M vendor. This 
restricted use does not create an error condition, but also does not generate an event. 

An M process registers events by creating an entry in ^$J[OB]. 'These entries are of the form ^$J[OB]
(processid, "EVENT', evclass, evid), where the value of this node is the entryref of the event handler. As in the 
MW API, ^$E[VENT] may contain information about the events as they occur. 

Asynchronous event handling routines implicitly invoke an argumentless ABLOCK when they are entered as 
the result of an event. When the event handler is exited, there is an implicit AUNBLOCK of all events. 

Event classes which may be registered are COMM, HALT, IPC, INTERRUPT, POWER, TIMER, USER and 
vendor defined events beginning with Z. All other event classes are reserved for future use. Each of these event
classes may be processed using either the synchronous or asynchronous event model. 

COMM events use device numbers as the evid values. Not all devices necessarily generate events. What 
devices generate COMM events, and under what circumstances, is determined by the M vendor. 

HALT events are generated when a MUMPS job is halted, either by an explicit HALT command or by a 
vendor-specified job termination utility. The evid value for a job halted by an explicit HALT command is 1 
(the digit "one"). Additional evid values maybe specified by vendors for jobs which are halted by other means. 

IPC events use processids as the evid values, and are used for interprocess communication. The ETRIGGER 
command generates an event coming from the current process (i.e ., the one executing the ETRlGGER 
command). The processid specified in the argument to the ETRlGGER command must be the current 
processid. If an evid other than the current processid is provided in ETRlGGER, an error occurs. The event 
may be received by any process which has registered this event (i.e., any process which has created the 
appropriate node(s) below its ^$JOB(processid, "EVENT", “IPC'') node. See 3.2 (Annotated Examples of Use)
for a clarifying example. 

INTERRUPT events are generated when a user interrupts a running job in some vendor-specified manner 
(typically by typing Ctrl-C). The range of evid values is specified by the individual vendors. 

POWER events, if supported, are generated to indicate imminent power interruption. The range of evid values 
is specified by the individual vendors. 

TIMER events use ^$EVENT("EVENTDEF",”TIMER'',TIMERID,''INTERVAL") to identify the running time 
remaining before or elapsed time after the timer event (in seconds). It also uses ^$EVENT ("EVENTDEF", 
''TIMER'', TIMERID," ACTIVE") and ^$EVENT ("EVENTDEF",''TIMER'',TIMERID,''AUTO'') to control 
the state of the timer. The timer is started (or restarted) by setting the ACTIVE value non-zero. When the timer
runs out (i.e., the "INTERVAL" node goes from a positive to a non-positive value) the timer event occurs 



Event Processing X11/1998-28
August 10, 1998

and the INTERVAL value is automatically reset to the AUTO value. Thus if AUTO is true (and positive) , this 
creates a "free-running" timer that fires every AUTO seconds. If AUTO is false (i.e., 0), this is a "single shot" 
timer that counts down and generates the event as it crosses zero. In the latter case the timer can be queried for 
the elapsed time since it fired (as INTERVAL will continue to decrement (i.e., become more negative) until it 
is halted or the INTERVAL value overflows negatively). TIMERID values are names, and the total number of 
concurrent timers available is determined by the M vendor (this limit may be specified per job, per system or 
both ways). These TIMERID values are the values for evid in ^$JOB. 

USER events are for programmatically generated events. Events are registered using ^$JOB 
(processid,"EVENT",'LJSER",EVENTID). EVENTID values are names. These events are generated only 
by calls to ETR[IGGER]. 

Events occur in the scope of a system (i.e., the set of processes for which $JOB is guaranteed unique) . 
Processing of events is handled by selected processes - those which have registered the event in ^$JOB. If an 
event is registered by more -than one process, each process' event handler is invoked when the event occurs. 
The order in which the event handlers are invoked is not specified . 

Synchronous and asynchronous event processing can coexist as long as they have non- overlapping 
event classes. It is an error to start both synchronous and asynchronous event processing on the same 
event class. 

3.2. Annotated Examples Of Use 

3.2.1. A POWER event example

This example assumes that the underlying system is capable of receiving a warning of imminent power loss 
from the UPS which is providing it power. and responding by generating a POWER event with eventid = 1. A 
given process may want to execute a routine “^SHTDN” to save its state when and if this happens. The 
following annotated example indicates how it can arrange to do this asynchronously. 

; Register the POWER event for this process 
SET ^$JOB($JOB, ”EVENT”, "POWER", l) = "^SHTDN" 
; Enable this event for Asynchronous Event Processing 
ASTART "POWER" 

At this point, if the UPS generates the POWER event, this process will transfer control (asynchronously) to 
^SHTDN. If this process also has a handler for another event class which should be interruptable by POWER 
events, that event handler should contain code like: 

; Unblock POWER events in this handler 
AUNBLOCK "POWER" 
...the body of the event handler goes here 
; Now re-block POWER events so that they are not double- 
; unblocked upon exit 
ABLOCK "POWER" QUIT 

3.2.2. IPC Events 

Identification of participating processes in IPC events may be confusing. An example will help to clarify the 
roles of the processes. Suppose the job with processid X ("process X") wants to register routine ^FROMY to 
process IPC events from the job with processid Y ("process Y”). It would need to issue a command like 

SET ^$JOB (X, “ ”EVENT“ ”, “ ”IPC“ ”,Y)= “^FROMY” 
to register this event. When process Y is ready to communicate with process X, it would issue a command like 

ETRIGGER "^$JOB (X, “ ”EVENT“ ”, “ ”IPC“ ”,Y)”
This would result in process X executing the routine ^FROMY (synchronously or asynchronously, depending 
on whether an ESTART or ASTART command was issued). 

Event Processing X11/1998-28
August 10, 1998

and the INTERVAL value is automatically reset to the AUTO value. Thus if AUTO is true (and positive) , this 
creates a "free-running" timer that fires every AUTO seconds. If AUTO is false (i.e., 0), this is a "single shot" 
timer that counts down and generates the event as it crosses zero. In the latter case the timer can be queried for 
the elapsed time since it fired (as INTERVAL will continue to decrement (i.e., become more negative) until it 
is halted or the INTERVAL value overflows negatively). TIMERID values are names, and the total number of 
concurrent timers available is determined by the M vendor (this limit may be specified per job, per system or 
both ways). These TIMERID values are the values for evid in ^$JOB. 

USER events are for programmatically generated events. Events are registered using ^$JOB 
(processid,"EVENT",'LJSER",EVENTID). EVENTID values are names. These events are generated only 
by calls to ETR[IGGER]. 

Events occur in the scope of a system (i.e., the set of processes for which $JOB is guaranteed unique) . 
Processing of events is handled by selected processes - those which have registered the event in ^$JOB. If an 
event is registered by more -than one process, each process' event handler is invoked when the event occurs. 
The order in which the event handlers are invoked is not specified . 

Synchronous and asynchronous event processing can coexist as long as they have non- overlapping 
event classes. It is an error to start both synchronous and asynchronous event processing on the same 
event class. 

3.2. Annotated Examples Of Use 

3.2.1. A POWER event example

This example assumes that the underlying system is capable of receiving a warning of imminent power loss 
from the UPS which is providing it power. and responding by generating a POWER event with eventid = 1. A 
given process may want to execute a routine “^SHTDN” to save its state when and if this happens. The 
following annotated example indicates how it can arrange to do this asynchronously. 

; Register the POWER event for this process 
SET ^$JOB($JOB, ”EVENT”, "POWER", l) = "^SHTDN" 
; Enable this event for Asynchronous Event Processing 
ASTART "POWER" 

At this point, if the UPS generates the POWER event, this process will transfer control (asynchronously) to 
^SHTDN. If this process also has a handler for another event class which should be interruptable by POWER 
events, that event handler should contain code like: 

; Unblock POWER events in this handler 
AUNBLOCK "POWER" 
...the body of the event handler goes here 
; Now re-block POWER events so that they are not double- 
; unblocked upon exit 
ABLOCK "POWER" QUIT 

3.2.2. IPC Events 

Identification of participating processes in IPC events may be confusing. An example will help to clarify the 
roles of the processes. Suppose the job with processid X ("process X") wants to register routine ^FROMY to 
process IPC events from the job with processid Y ("process Y”). It would need to issue a command like 

SET ^$JOB (X, “ ”EVENT“ ”, “ ”IPC“ ”,Y)= “^FROMY” 
to register this event. When process Y is ready to communicate with process X, it would issue a command like 

ETRIGGER "^$JOB (X, “ ”EVENT“ ”, “ ”IPC“ ”,Y)”
This would result in process X executing the routine ^FROMY (synchronously or asynchronously, depending 
on whether an ESTART or ASTART command was issued). 



Event Processing X11/1998-28
August 10, 1998

3.3. Formalization
Add to the list in section 2 (Normative references) 
ANSI Xl 1.6-1995 M Windowing API 

Add a new section, 6.3.3 
6.3.3 Event Processing 
Event processing provides a mechanism by which a process can execute specifiable commands In response to 
some occurrence outside the normal program flow. Event processing can be done using either a synchronous 
model or an asynchronous model. Synchronous event processing is enabled by issuing the ESTART command,
and disabled by issuing the ESTOP command.. Asynchronous event processing is enabled by issuing the 
ASTART command, and disabled by issuing the ASTOP command. It is possible to temporarily block 
asynchronous events from being processed using the ABLOCK command. This temporary block is released 
using the AUNBLOCK command. Events can be generated by running processes using the ETRIGGER 
command. 

Asynchronous event processing and synchronous event processing cannot both be enabled at the 
same time for any event class. 

Events are divided into event classes, and those classes are further divided into event id's. Each event class 
may be independently enabled, disabled, blocked and unblocked (except that individual event classes may not 
be disabled in the synchronous model). 

The event classes ire: 

COMM 
These are events associated with devices. evid is always a devicexpr for this class of event. Not all 
devices necessarily generate events. What devices generate COMM  events, and under what 
circumstances is determined by the implementation. It is to be understood that use of COMM 
events may not be portable. 

HALT 
HALT events are generated when a process terminates. evid is 1 for processes which halt by an 
explicit HALT command. Other values may be specified by the implementation to correspond to 
vendor-specific job termination utilities. It is to be understood that use of these other values may 
not be portable 

IPC 
These are events generated by other processes using the ETRIGGER command. The evid values 
are restricted to valid processids. The evid value will always be the processid of the process 
which issued the ETRIGGER command. 

INTERRUPT 
These are events generated by the interruption of a running job in some implementation-specific 
manner (typically by implementation-specific keyboard commands or job control utilities). Different 
forms of interrupts may be possible in some implementations, and these may possibly be 
differentiated by evid values. The valid evid value(s) is determined by the implementor. It is to be 
understood that use of INTERRUPT events may not be portable 

POWER 
These are events generated when an imminent loss of power can be anticipated (typically because of 
a signal from the power source). Different types of warnings may be possible in some 
implementations, and these may possibly be differentiated by evid values. The evid value(s) is 
determined by the implementor. It is to be understood that use of POWER events may not be 
portable. 

Event Processing X11/1998-28
August 10, 1998

3.3. Formalization
Add to the list in section 2 (Normative references) 
ANSI Xl 1.6-1995 M Windowing API 

Add a new section, 6.3.3 
6.3.3 Event Processing 
Event processing provides a mechanism by which a process can execute specifiable commands In response to 
some occurrence outside the normal program flow. Event processing can be done using either a synchronous 
model or an asynchronous model. Synchronous event processing is enabled by issuing the ESTART command,
and disabled by issuing the ESTOP command.. Asynchronous event processing is enabled by issuing the 
ASTART command, and disabled by issuing the ASTOP command. It is possible to temporarily block 
asynchronous events from being processed using the ABLOCK command. This temporary block is released 
using the AUNBLOCK command. Events can be generated by running processes using the ETRIGGER 
command. 

Asynchronous event processing and synchronous event processing cannot both be enabled at the 
same time for any event class. 

Events are divided into event classes, and those classes are further divided into event id's. Each event class 
may be independently enabled, disabled, blocked and unblocked (except that individual event classes may not 
be disabled in the synchronous model). 

The event classes ire: 

COMM 
These are events associated with devices. evid is always a devicexpr for this class of event. Not all 
devices necessarily generate events. What devices generate COMM  events, and under what 
circumstances is determined by the implementation. It is to be understood that use of COMM 
events may not be portable. 

HALT 
HALT events are generated when a process terminates. evid is 1 for processes which halt by an 
explicit HALT command. Other values may be specified by the implementation to correspond to 
vendor-specific job termination utilities. It is to be understood that use of these other values may 
not be portable 

IPC 
These are events generated by other processes using the ETRIGGER command. The evid values 
are restricted to valid processids. The evid value will always be the processid of the process 
which issued the ETRIGGER command. 

INTERRUPT 
These are events generated by the interruption of a running job in some implementation-specific 
manner (typically by implementation-specific keyboard commands or job control utilities). Different 
forms of interrupts may be possible in some implementations, and these may possibly be 
differentiated by evid values. The valid evid value(s) is determined by the implementor. It is to be 
understood that use of INTERRUPT events may not be portable 

POWER 
These are events generated when an imminent loss of power can be anticipated (typically because of 
a signal from the power source). Different types of warnings may be possible in some 
implementations, and these may possibly be differentiated by evid values. The evid value(s) is 
determined by the implementor. It is to be understood that use of POWER events may not be 
portable. 



Event Processing X11/1998-28
August 10, 1998

TIMER 
Timer events are generated when a specified interval has elapsed after the timer was set (see 
^$EVENT). evid values are names. The implementor may limit the number of concurrent timers 
available, either by a single process or by the entire M system, or both. 

USER 
User events are always generated by ETRIGGER commands in the current process. evid
 values are names.

Z[ unspecified] 
Z is the initial letter reserved for defining non-standard event classes. The requirement that Z be 
used permits the unused names to be reserved for future enhancemen t of the standard without 
altering the execution of existing routines which observe the rules of th e standard. 

Only those events which have been registered by creating it  node in ^$JOB (processid,"EVENT",evclass,evid) 
generate action. In those cases the value of the node is an entrvref which specifies the event handler. 
Asynchronous processing of an event (described below) occurs immediately following the event unless the 
event is blocked. 

Blocked events are saved on one of two per-process event queues (one each for synchronous and asynchronous
event classes). Each queue is only guaranteed to hold one event, though they may hold more. Events occurring 
when the queue is full are lost. Queued events are processed in the order they occurred once they are 
unblocked. It is possible that blocked events will not execute in the order they occurred if the events are of 
different event classes, and the event classes are separately unblocked in an order different from the order of 
occurrence of the events. Disabling an event class via ASTOP or by killing the appropriate node(s) in 
^$EVENf or ^$JOB removes all entries of that class from the event queue . 

When a registered event is processed in the asynchronous model, the current value of $TEST, the current 
execution level, and the current execution location are saved in an extrinsic frame on the PROCESS-STACK. 
The process then increments the block count on all event classes, and implicitly executes the command 

DO handler 

where handler is the registered event handler. Note that neither $REFERENCE nor any other shared resource 
is stacked by this action. If the event handler changes the naked indicator, it may be advisable for it to first 
NEW $REFERENCE1. When the process control returns from the handler, the process decrements the block 
count on all event classes. The value of $TEST and the execution level are restored, the process returns to the 
stacked execution location and the extrinsic frame is removed from the PROCESS -STACK. 

Synchronous event processing is enabled by the ESTART command, which leaves the process in a wait-for-
event state. Events are processed sequentially in the order in which they occur. Each event is added to the per-
process synchronous event queue. This queue is only guaranteed to hold one event , though it may hold more. 
Events occurring when the queue is full are lost. When the process is in the wait-for-event state and there is an 
event in the queue, the event is processed in the synchronous model. 

1 NEW $REFERENCE passed to MDC-A status (X11/SCI3/1998-4) at the June 1998 meeting. Event 
Processing references but is not dependent on NEW $REFERENCE. 
When a registered event is processed in the synchronous model, the process implicitly executes 
the command 

Event Processing X11/1998-28
August 10, 1998

TIMER 
Timer events are generated when a specified interval has elapsed after the timer was set (see 
^$EVENT). evid values are names. The implementor may limit the number of concurrent timers 
available, either by a single process or by the entire M system, or both. 

USER 
User events are always generated by ETRIGGER commands in the current process. evid
 values are names.

Z[ unspecified] 
Z is the initial letter reserved for defining non-standard event classes. The requirement that Z be 
used permits the unused names to be reserved for future enhancemen t of the standard without 
altering the execution of existing routines which observe the rules of th e standard. 

Only those events which have been registered by creating it  node in ^$JOB (processid,"EVENT",evclass,evid) 
generate action. In those cases the value of the node is an entrvref which specifies the event handler. 
Asynchronous processing of an event (described below) occurs immediately following the event unless the 
event is blocked. 

Blocked events are saved on one of two per-process event queues (one each for synchronous and asynchronous
event classes). Each queue is only guaranteed to hold one event, though they may hold more. Events occurring 
when the queue is full are lost. Queued events are processed in the order they occurred once they are 
unblocked. It is possible that blocked events will not execute in the order they occurred if the events are of 
different event classes, and the event classes are separately unblocked in an order different from the order of 
occurrence of the events. Disabling an event class via ASTOP or by killing the appropriate node(s) in 
^$EVENf or ^$JOB removes all entries of that class from the event queue . 

When a registered event is processed in the asynchronous model, the current value of $TEST, the current 
execution level, and the current execution location are saved in an extrinsic frame on the PROCESS-STACK. 
The process then increments the block count on all event classes, and implicitly executes the command 

DO handler 

where handler is the registered event handler. Note that neither $REFERENCE nor any other shared resource 
is stacked by this action. If the event handler changes the naked indicator, it may be advisable for it to first 
NEW $REFERENCE1. When the process control returns from the handler, the process decrements the block 
count on all event classes. The value of $TEST and the execution level are restored, the process returns to the 
stacked execution location and the extrinsic frame is removed from the PROCESS -STACK. 

Synchronous event processing is enabled by the ESTART command, which leaves the process in a wait-for-
event state. Events are processed sequentially in the order in which they occur. Each event is added to the per-
process synchronous event queue. This queue is only guaranteed to hold one event , though it may hold more. 
Events occurring when the queue is full are lost. When the process is in the wait-for-event state and there is an 
event in the queue, the event is processed in the synchronous model. 

1 NEW $REFERENCE passed to MDC-A status (X11/SCI3/1998-4) at the June 1998 meeting. Event 
Processing references but is not dependent on NEW $REFERENCE. 
When a registered event is processed in the synchronous model, the process implicitly executes 
the command 



Event Processing X11/1998-28
August 10, 1998

DO handler 

where handler is the registered event handler. When process control returns from the handler, the process 
returns to the waiting-for-event state. If the handler executes an ESTOP command, the control implictly 
performs the number of M QUIT commands necessary to return to the execution level of the most recently 
executed ESTART command, and then terminates that ESTART command. 

When a process is initiated, no event processing is enabled, and no nodes in ^$JOB (processid,"EVENT") are
defined. When a process terminates, event processing is implicitly terminated and ^$JOB 
(processid,"EVENT") is implicitly killed. Any queued events (synchronous or asynchronous event queues) 
for that process are discarded. 

Modify the last sentence of the first paragraph of 7.1.2.3 (Process stack) to be: 
Three types of items, or frames, will be placed on the PROCESS-STACK, DO frames (including 
XECUTEs), extrinsic frames (including exfunc, exvar and asynchronous events) and error frames (for errors 
that occur during error processing): 

Modify the definition of ssvn in 7.1.3 to include the additional choice 
| syntax of ^$EVENT structured system variable |  

Add a new section 7.I.3.x 
7.1.3.x ^$EVENT 
^$E[VENT] ( eventexpr ) 

eventexpr  : : =   expr V |  einfoattribute  |
|  EVENTDEF   |

note that einfoattribute is defined in XI1.6, the MWAPI standard, along with its semantics. 

Nodes under ^$EVENT("EVENTDEF") are used to identify specific behavior of the named events. Node 
^$EVENT("EVENTDEF",'TIMER", timerid,"INTERVAL"), where timerid is a valid evid value for a TIMER 
event, identifies (if positive) the running time remaining before the timer event (in seconds). This value counts 
down continuously at the rate of 1/second the corresponding ^$EVENT 
("EVENTDEF",''TIMER'',timerid,''ACTIVE'') node (see below) evaluates as a tvexpr to 1. 

Node ^$EVENT("EVENTDEF",''TIMER'',timerid,''AUTO'') , where timerid is a valid evid value for a TIMER 
event, is the value set into ^$EVENT("EVENTDEF",”TIMER",timerid,"INTERVAL") when it is decremented 
from a positive value to a non-positive value. 

Node ^$EVENT("EVENTDEF",''TIMER'',timerid, "ACTIVE"), where timerid is a valid evid value for a 
TIMER event, identifies the state of the timer. If the node evaluates as a tvexpr to 1, the timer is active 
(running). If the node evaluates as a tvexpr to 0, the timer is inactive. 

All of these nodes must be set to establish the timer. If any of the nodes are killed, no timer event occurs. 

Add the following to section 7.1.3.4, ^$JOB: 
^$JOB ( processid, expr V "EVENT", expr V evc1ass, evid) = entryref

This node identifies the events which are enabled for event processing under either the synchronous or 
asynchronous event processing models, and specifies the event handler which is invoked to process the event. 
Setting this node enables the specified events for event processing. Killing this node disables the specified 
events for event processing, and removes all child nodes, even if KVALUE is used. Implementations are 
expected to support all of the specified evclass and evid values with the understanding that some events may 

Event Processing X11/1998-28
August 10, 1998

DO handler 

where handler is the registered event handler. When process control returns from the handler, the process 
returns to the waiting-for-event state. If the handler executes an ESTOP command, the control implictly 
performs the number of M QUIT commands necessary to return to the execution level of the most recently 
executed ESTART command, and then terminates that ESTART command. 

When a process is initiated, no event processing is enabled, and no nodes in ^$JOB (processid,"EVENT") are
defined. When a process terminates, event processing is implicitly terminated and ^$JOB 
(processid,"EVENT") is implicitly killed. Any queued events (synchronous or asynchronous event queues) 
for that process are discarded. 

Modify the last sentence of the first paragraph of 7.1.2.3 (Process stack) to be: 
Three types of items, or frames, will be placed on the PROCESS-STACK, DO frames (including 
XECUTEs), extrinsic frames (including exfunc, exvar and asynchronous events) and error frames (for errors 
that occur during error processing): 

Modify the definition of ssvn in 7.1.3 to include the additional choice 
| syntax of ^$EVENT structured system variable |  

Add a new section 7.I.3.x 
7.1.3.x ^$EVENT 
^$E[VENT] ( eventexpr ) 

eventexpr  : : =   expr V |  einfoattribute  |
|  EVENTDEF   |

note that einfoattribute is defined in XI1.6, the MWAPI standard, along with its semantics. 

Nodes under ^$EVENT("EVENTDEF") are used to identify specific behavior of the named events. Node 
^$EVENT("EVENTDEF",'TIMER", timerid,"INTERVAL"), where timerid is a valid evid value for a TIMER 
event, identifies (if positive) the running time remaining before the timer event (in seconds). This value counts 
down continuously at the rate of 1/second the corresponding ^$EVENT 
("EVENTDEF",''TIMER'',timerid,''ACTIVE'') node (see below) evaluates as a tvexpr to 1. 

Node ^$EVENT("EVENTDEF",''TIMER'',timerid,''AUTO'') , where timerid is a valid evid value for a TIMER 
event, is the value set into ^$EVENT("EVENTDEF",”TIMER",timerid,"INTERVAL") when it is decremented 
from a positive value to a non-positive value. 

Node ^$EVENT("EVENTDEF",''TIMER'',timerid, "ACTIVE"), where timerid is a valid evid value for a 
TIMER event, identifies the state of the timer. If the node evaluates as a tvexpr to 1, the timer is active 
(running). If the node evaluates as a tvexpr to 0, the timer is inactive. 

All of these nodes must be set to establish the timer. If any of the nodes are killed, no timer event occurs. 

Add the following to section 7.1.3.4, ^$JOB: 
^$JOB ( processid, expr V "EVENT", expr V evc1ass, evid) = entryref

This node identifies the events which are enabled for event processing under either the synchronous or 
asynchronous event processing models, and specifies the event handler which is invoked to process the event. 
Setting this node enables the specified events for event processing. Killing this node disables the specified 
events for event processing, and removes all child nodes, even if KVALUE is used. Implementations are 
expected to support all of the specified evclass and evid values with the understanding that some events may 



Event Processing X11/1998-28
August 10, 1998

never occur on a given implementation. If an evclass or evid not defined in the standard is used an error occurs
with an ecode = M38. Attempting to set this node when evid cannot be registered due to resource availability 
will produce an error with an ecode = "M11O". 

| “DISABLED” |

^$JOB (processid, expr V “EVENT”, expr V evclass, evid, “MODE”) = | “SYNCHRONOUS” |

| “ASYNCHRONOUS” |

This node identifies the processing mode for the specified event by the specified process. If the specified 
event class is currently enabled for asynchronous event processing by this process (see 8.2.u, ASTART), the 
value will be "ASYNCHRONOUS". If the specified event class is currently enabled for synchronous event 
processing by this process (see 8.2.x, EST ART), the value will be "SYNCHRONOUS". If the specified event
class is not enabled for either form of processing by this process, the value will be "DISABLED". 

^$JOB (processid, expr V “EVENT”, expr V evclass, evid, “BLOCKS”) = intlit

This node gives the count of blocks (see 8.2. t, ABLOCK, and 8.2.w, AUNBLOCK) on the specified event for 
the specified process. It only exists if the event class is enabled in either synchronous or asynchronous event 
processing modes. If the value of the node is zero , the events are not blocked. If the value is greater than zero, 
the events are blocked. 

Add six new commands to section 8.2: 
8.2t ABLOCK

AB [LOCK] postcond SP [  |   L evclass   | ]
   | ( L evclass   | 

| COMM                  |

| IPC                        |

evclass  : : = expr V | INTERRUPT         |

| POWER                 |

| TIMER                   |

| USER                     |

| Z (unspecified)       |

Event classes not specified above are reserved for future use. 

ABLOCK temporarily blocks events during critical sections of a process. The three forms of 
ABLOCK are given the following names: 

a) L evclass Selective ABLOCK

b) (L evclass) Exclusive ABLOCK

c) Empty argument list: ABLOCK All

In the Selective ABLOCK, the named event classes are blocked as described below. In the Exclusive 
ABLOCK, all event classes except the named event classes are blocked as described below. In the ABLOCK 
All, all event classes are blocked as described below. 

When an event class is blocked, an internal counter for that event class is incremented. If the counter has a 
positive value, all events of that class are blocked from interrupting the process executing the ABLOCK 
command. If a registered event occurs while blocked, the event is queued. Unregistered events are not queued. 
Additional subsequent events may be queued if space is provided by the implementation (space for only one 

Event Processing X11/1998-28
August 10, 1998

never occur on a given implementation. If an evclass or evid not defined in the standard is used an error occurs
with an ecode = M38. Attempting to set this node when evid cannot be registered due to resource availability 
will produce an error with an ecode = "M11O". 

| “DISABLED” |

^$JOB (processid, expr V “EVENT”, expr V evclass, evid, “MODE”) = | “SYNCHRONOUS” |

| “ASYNCHRONOUS” |

This node identifies the processing mode for the specified event by the specified process. If the specified 
event class is currently enabled for asynchronous event processing by this process (see 8.2.u, ASTART), the 
value will be "ASYNCHRONOUS". If the specified event class is currently enabled for synchronous event 
processing by this process (see 8.2.x, EST ART), the value will be "SYNCHRONOUS". If the specified event
class is not enabled for either form of processing by this process, the value will be "DISABLED". 

^$JOB (processid, expr V “EVENT”, expr V evclass, evid, “BLOCKS”) = intlit

This node gives the count of blocks (see 8.2. t, ABLOCK, and 8.2.w, AUNBLOCK) on the specified event for 
the specified process. It only exists if the event class is enabled in either synchronous or asynchronous event 
processing modes. If the value of the node is zero , the events are not blocked. If the value is greater than zero, 
the events are blocked. 

Add six new commands to section 8.2: 
8.2t ABLOCK

AB [LOCK] postcond SP [  |   L evclass   | ]
   | ( L evclass   | 

| COMM                  |

| IPC                        |

evclass  : : = expr V | INTERRUPT         |

| POWER                 |

| TIMER                   |

| USER                     |

| Z (unspecified)       |

Event classes not specified above are reserved for future use. 

ABLOCK temporarily blocks events during critical sections of a process. The three forms of 
ABLOCK are given the following names: 

a) L evclass Selective ABLOCK

b) (L evclass) Exclusive ABLOCK

c) Empty argument list: ABLOCK All

In the Selective ABLOCK, the named event classes are blocked as described below. In the Exclusive 
ABLOCK, all event classes except the named event classes are blocked as described below. In the ABLOCK 
All, all event classes are blocked as described below. 

When an event class is blocked, an internal counter for that event class is incremented. If the counter has a 
positive value, all events of that class are blocked from interrupting the process executing the ABLOCK 
command. If a registered event occurs while blocked, the event is queued. Unregistered events are not queued. 
Additional subsequent events may be queued if space is provided by the implementation (space for only one 



Event Processing X11/1998-28
August 10, 1998

event is guaranteed). Events, if queued, will occur in the order in which they occurred when the block is 
removed (i.e., when the counter becomes zero). All events for a process are stored in one of two queues (one 
for synchronous events, the other for asynchronous events), rather than a separate queue for each class. Each 
process, however, must maintain its own queues, as each process blocks and unblocks events independently.

8.2.u ASTA[RT]
ASTA[RT]  postcond SP  [ |   L evclass    | ]

     | ( L evclass  ) |

ASTART enables asynchronous event processing for all or selected event classes. Then three forms of AST 
ART are given the following names: 

a) L evclass Selective ASTART

b) (L evclass) Exclusive ASTART

c) Empty argument list: ASTART All

In the Selective ASTART, the named event classes are enabled for asynchronous event processing as described
below. In the Exclusive ASTART, all event classes except the named event classes are enabled for 
asynchronous event processing as described below. In the ASTART All, all event classes are enabled for 
asynchronous event processing as described below. 

If any of the classes being enabled for asynchronous event processing are currently enabled for synchronous 
event processing an error occurs with an ecode = "M102". 

Event classes are enabled by ASTART only for the process executing the ASTART command. It is not an error 
to enable an event class which is already enabled for the asynchronous model.

8.2.v ASTO[P]
ASTO[P]  postcond SP  [  |  L evclass  |  ]

   |  L evclass  | 

ASTOP disables asynchronous event processing for all or selected event classes. The three forms of 
ASTOP are given the following names: 

a) L evclass Selective ASTOP
b) (L evclass) Exclusive ASTOP
c) Empty argument list: ASTOP All

In the Selective ASTOP, the named event classes are disabled for asynchronous event processing as described 
below. In the Exclusive ASTOP, all event classes except the named event classes are disabled for asynchronous
event processing as described below. In the ASTOP All, all event classes are disabled for asynchronous event 
processing as described below. 

When asynchronous event processing is disabled for a given event class, events of that class have no effect on 
the process. Event classes are disabled by ASTOP only for the process executing the ASTOP command. It is 
not an error to disable an event class which is already disabled. 

8.2.w AUNBLOCK
AUNB[LOCK]  postcond  SP [  |    L evclass    |  ]

   | (  L evclass  ) |

Event Processing X11/1998-28
August 10, 1998

event is guaranteed). Events, if queued, will occur in the order in which they occurred when the block is 
removed (i.e., when the counter becomes zero). All events for a process are stored in one of two queues (one 
for synchronous events, the other for asynchronous events), rather than a separate queue for each class. Each 
process, however, must maintain its own queues, as each process blocks and unblocks events independently.

8.2.u ASTA[RT]
ASTA[RT]  postcond SP  [ |   L evclass    | ]

     | ( L evclass  ) |

ASTART enables asynchronous event processing for all or selected event classes. Then three forms of AST 
ART are given the following names: 

a) L evclass Selective ASTART

b) (L evclass) Exclusive ASTART

c) Empty argument list: ASTART All

In the Selective ASTART, the named event classes are enabled for asynchronous event processing as described
below. In the Exclusive ASTART, all event classes except the named event classes are enabled for 
asynchronous event processing as described below. In the ASTART All, all event classes are enabled for 
asynchronous event processing as described below. 

If any of the classes being enabled for asynchronous event processing are currently enabled for synchronous 
event processing an error occurs with an ecode = "M102". 

Event classes are enabled by ASTART only for the process executing the ASTART command. It is not an error 
to enable an event class which is already enabled for the asynchronous model.

8.2.v ASTO[P]
ASTO[P]  postcond SP  [  |  L evclass  |  ]

   |  L evclass  | 

ASTOP disables asynchronous event processing for all or selected event classes. The three forms of 
ASTOP are given the following names: 

a) L evclass Selective ASTOP
b) (L evclass) Exclusive ASTOP
c) Empty argument list: ASTOP All

In the Selective ASTOP, the named event classes are disabled for asynchronous event processing as described 
below. In the Exclusive ASTOP, all event classes except the named event classes are disabled for asynchronous
event processing as described below. In the ASTOP All, all event classes are disabled for asynchronous event 
processing as described below. 

When asynchronous event processing is disabled for a given event class, events of that class have no effect on 
the process. Event classes are disabled by ASTOP only for the process executing the ASTOP command. It is 
not an error to disable an event class which is already disabled. 

8.2.w AUNBLOCK
AUNB[LOCK]  postcond  SP [  |    L evclass    |  ]

   | (  L evclass  ) |



Event Processing X11/1998-28
August 10, 1998

AUNBLOCK removes a temporary block on events that was imparted by ABLOCK. The three forms of 
AUNBLOCK are given the following names:

a) L evclass Selective AUNBLOCK

b) (L evclass) Exclusive AUNBLOCK

c) Empty argument list: AUNBLOCK All

In the Selective AUNBLOCK, the named event classes are unblocked as described below. In the Exclusive 
AUNBLOCK, all event classes except the named event classes are unblocked as described below. In the 
AUNBLOCK All, all event classes are unblocked as described below. 

When an event class is unblocked, the internal counter for the event class (see 8.2. t ABLOCK) is decremented,
unless it is already zero (the counter may not be negative). If the counter is zero, the temporary block, if any, 
on the event class is removed. Pending events (see 8.2. t ABLOCK), if any, occur in the order in which they 
arrived. Blocks are removed only for the process executing the AUNBLOCK command. It is not an error to 
unblock events which are not currently blocked. 

8.2.x ESTA[RT]
ESTA[RT]  postcond  SP [  |  L wevclass  |  ]

   | (L wevclass) |

wevclass  : : = |  evclass                |
|  expr V “WAPI”  |

ESTART enables synchronous event processing for the selected event classes. The additional class "WAPI" is 
provided to enable just the synchronous event processing specified in X 11.6, the MWAPI. If any of the event 
classes being enabled for synchronous event processing is currently enabled for asynchronous event 
processing, an error occurs with ecode = "M102". It is not an error to enable an event class which is already 
enabled for synchronous event processing.

Synchronous event processing remains activated until the termination of execution of the ESTART command, 
except that synchronous event processing is implicitly deactivated at the initiation of call back processing for 
each event. At the conclusion of call back processing for each event, synchronous event processing is 
implicitly reactivated. 

The three forms of ESTART are given the following names: 

a) L evclass Selective ESTART

b) (L evclass) Exclusive ESTART

c) Empty argument list: ESTART All

In the Selective ESTART, the named event classes are enabled for synchronous event processing as described 
below. In the Exclusive ESTART, all event classes except the named event classes are enabled for synchronous
event processing as described below. In the ESTART All, all event classes are enabled for synchronous event 
processing as described below. 

When synchronous event processing is enabled for a given event class, events of that class will cause the 
execution of the registered event handler, if any, for that specific event (call back processing). Event classes are
enabled by ESTART only for the process executing the ESTART command. 

Event Processing X11/1998-28
August 10, 1998

AUNBLOCK removes a temporary block on events that was imparted by ABLOCK. The three forms of 
AUNBLOCK are given the following names:

a) L evclass Selective AUNBLOCK

b) (L evclass) Exclusive AUNBLOCK

c) Empty argument list: AUNBLOCK All

In the Selective AUNBLOCK, the named event classes are unblocked as described below. In the Exclusive 
AUNBLOCK, all event classes except the named event classes are unblocked as described below. In the 
AUNBLOCK All, all event classes are unblocked as described below. 

When an event class is unblocked, the internal counter for the event class (see 8.2. t ABLOCK) is decremented,
unless it is already zero (the counter may not be negative). If the counter is zero, the temporary block, if any, 
on the event class is removed. Pending events (see 8.2. t ABLOCK), if any, occur in the order in which they 
arrived. Blocks are removed only for the process executing the AUNBLOCK command. It is not an error to 
unblock events which are not currently blocked. 

8.2.x ESTA[RT]
ESTA[RT]  postcond  SP [  |  L wevclass  |  ]

   | (L wevclass) |

wevclass  : : = |  evclass                |
|  expr V “WAPI”  |

ESTART enables synchronous event processing for the selected event classes. The additional class "WAPI" is 
provided to enable just the synchronous event processing specified in X 11.6, the MWAPI. If any of the event 
classes being enabled for synchronous event processing is currently enabled for asynchronous event 
processing, an error occurs with ecode = "M102". It is not an error to enable an event class which is already 
enabled for synchronous event processing.

Synchronous event processing remains activated until the termination of execution of the ESTART command, 
except that synchronous event processing is implicitly deactivated at the initiation of call back processing for 
each event. At the conclusion of call back processing for each event, synchronous event processing is 
implicitly reactivated. 

The three forms of ESTART are given the following names: 

a) L evclass Selective ESTART

b) (L evclass) Exclusive ESTART

c) Empty argument list: ESTART All

In the Selective ESTART, the named event classes are enabled for synchronous event processing as described 
below. In the Exclusive ESTART, all event classes except the named event classes are enabled for synchronous
event processing as described below. In the ESTART All, all event classes are enabled for synchronous event 
processing as described below. 

When synchronous event processing is enabled for a given event class, events of that class will cause the 
execution of the registered event handler, if any, for that specific event (call back processing). Event classes are
enabled by ESTART only for the process executing the ESTART command. 



Event Processing X11/1998-28
August 10, 1998

Call back processing can execute an EST ART command. In this case, the effect is to change the event classes 
which are enabled for subsequent synchronous event processing. ESTART commands are not nested. It is not 
an error to issue a second ESTART command on the same event classes. 

The execution of an ESTART command which starts synchronous event processing is terminated when an 
ESTOP command is executed during call back processing for that EST ART command. When execution of an 
ESTART command which starts synchronous event processing is terminated, execution continues with the 
command following that EST ART command. 

8.2.y ESTOP 
ESTO[P] postcond [ SP ] 

The ESTOP command implicitly performs the number of QUIT commands necessary to return to the execution
level of the most recently executed ESTART command that started synchronous event processing, and then 
terminates that EST ART command. If synchronous event processing is not activated, execution of an ESTOP 
command has no effect. It is not possible to ESTOP only selected event classes. 

8.2.z ETRlGGER 
ETR[IGGER] postcond SP especref 

especref  : : = |  expr V ^$W[INDOW]  (espec)  [  :einforef  ]  |
|  expr V ^$J[OB]  (  erspec  )                              |

Note: espec and einforef should be as defined in X11.6, the MWAPI

erspec  : : = processid, “EVENT”, expr V evclass, expr V evid

evid : : = expr

Note that the range of values allowed for evid depends on the value of evc1ass, and may be 
implementation specific. 

ETRlGGER causes an event to occur, though use of a processid other than the current job's own 
processid may be restricted by the implementation. This restricted use does not generate an error, but will not 
generate an event. Restrictions (if any) must be specified in the implementation's conformance statement. 

If the use is not restricted and the specified event is enabled for either synchronous or asynchronous event 
processing, the event processing for it will occur subsequently. The event that occurs is specified by evc1ass 
and evid. If evid does not specify a valid event, an error condition occurs with an ecode = "M103". 

If evc1ass evaluates to "IPC" and evid is not the current job's processid an error condition occurs with an ecode
="M104".

Add a new section (##) between section l l and section 12 of the Portability Requirements: 

## Event processing 

##.1 Number of timers 
The number of concurrently running timers must not exceed one (1) per process or sixteen (16) 
per system, whichever is smaller. 

##.2 Depth of event queues 
The per-process event queues (one each for synchronous and asynchronous events) must not 

Event Processing X11/1998-28
August 10, 1998

Call back processing can execute an EST ART command. In this case, the effect is to change the event classes 
which are enabled for subsequent synchronous event processing. ESTART commands are not nested. It is not 
an error to issue a second ESTART command on the same event classes. 

The execution of an ESTART command which starts synchronous event processing is terminated when an 
ESTOP command is executed during call back processing for that EST ART command. When execution of an 
ESTART command which starts synchronous event processing is terminated, execution continues with the 
command following that EST ART command. 

8.2.y ESTOP 
ESTO[P] postcond [ SP ] 

The ESTOP command implicitly performs the number of QUIT commands necessary to return to the execution
level of the most recently executed ESTART command that started synchronous event processing, and then 
terminates that EST ART command. If synchronous event processing is not activated, execution of an ESTOP 
command has no effect. It is not possible to ESTOP only selected event classes. 

8.2.z ETRlGGER 
ETR[IGGER] postcond SP especref 

especref  : : = |  expr V ^$W[INDOW]  (espec)  [  :einforef  ]  |
|  expr V ^$J[OB]  (  erspec  )                              |

Note: espec and einforef should be as defined in X11.6, the MWAPI

erspec  : : = processid, “EVENT”, expr V evclass, expr V evid

evid : : = expr

Note that the range of values allowed for evid depends on the value of evc1ass, and may be 
implementation specific. 

ETRlGGER causes an event to occur, though use of a processid other than the current job's own 
processid may be restricted by the implementation. This restricted use does not generate an error, but will not 
generate an event. Restrictions (if any) must be specified in the implementation's conformance statement. 

If the use is not restricted and the specified event is enabled for either synchronous or asynchronous event 
processing, the event processing for it will occur subsequently. The event that occurs is specified by evc1ass 
and evid. If evid does not specify a valid event, an error condition occurs with an ecode = "M103". 

If evc1ass evaluates to "IPC" and evid is not the current job's processid an error condition occurs with an ecode
="M104".

Add a new section (##) between section l l and section 12 of the Portability Requirements: 

## Event processing 

##.1 Number of timers 
The number of concurrently running timers must not exceed one (1) per process or sixteen (16) 
per system, whichever is smaller. 

##.2 Depth of event queues 
The per-process event queues (one each for synchronous and asynchronous events) must not 



Event Processing X11/1998-28
August 10, 1998

contain more than one event. 

##.3 Resolution of timers 
Timers must not use a resolution finer than one second . 

Modify section 3.1 (Conformance/Implementations) by adding 10 the text to be included (two 
places): 

"The depth of event queues is...” 
"The number of timer events is...”
"The resolution of timers is..." 

Modify the first paragraph of section 12 of the Portability Requirements to read: 

Programmers should exercise caution in the use of non integer values for the HANG command and in TIMER 
events and timeouts. In general, the period of actual time which elapses upon the execution of a HANG 
command, or which elapses before a TIMER event cannot be expected to be exact. In particular, relying upon 
noninteger values in these situations can lead to unexpected results. 

4. Implementation Effects 

4.1 Effect on Existing User Practices and Investments

No existing code will need to be changed as a result of this proposal. This change is compatible with the 
ANSI/Xl1.6-1995 MW API standard. Event Processing as defined herein will facilitate networking , 
communications, and other applications that require event processing capabilities. 

4.2 Effect on Existing Vendor Practices and Investments

One vendor representative indicated that much of the underlying effects of this proposal already exist in the ir 
products to handle the process control inherent in M. They indicated further that they expect that this is the 
case with all M vendors. In a previous version of this proposal, two vendors were represented in the vote. One 
voted affirmatively, the other abstained, and no CONs were raised. In the version previous to this, three 
vendors were present, and all three voted in favor of the proposal. No CONS concerning vendor impact were 
raised at that time. Vendors are invited to comment further upon this! [In the final vote , only one vendor was 
present and They voted against it citing implementation difficulties. ABS 8/98] 

4.3 Techniques and Costs for Compliance Verification

None

4.4 Legal Considerations

None

5. Closely Related Standards Activities

5.1 Other X11 Proposals Under Consideration 

X 11.6, the MWAPI continues to evolve. Modifications to this standard need to be examined to 
make sure that the two standards remain compatible in their event processing. 

Event Processing X11/1998-28
August 10, 1998

contain more than one event. 

##.3 Resolution of timers 
Timers must not use a resolution finer than one second . 

Modify section 3.1 (Conformance/Implementations) by adding 10 the text to be included (two 
places): 

"The depth of event queues is...” 
"The number of timer events is...”
"The resolution of timers is..." 

Modify the first paragraph of section 12 of the Portability Requirements to read: 

Programmers should exercise caution in the use of non integer values for the HANG command and in TIMER 
events and timeouts. In general, the period of actual time which elapses upon the execution of a HANG 
command, or which elapses before a TIMER event cannot be expected to be exact. In particular, relying upon 
noninteger values in these situations can lead to unexpected results. 

4. Implementation Effects 

4.1 Effect on Existing User Practices and Investments

No existing code will need to be changed as a result of this proposal. This change is compatible with the 
ANSI/Xl1.6-1995 MW API standard. Event Processing as defined herein will facilitate networking , 
communications, and other applications that require event processing capabilities. 

4.2 Effect on Existing Vendor Practices and Investments

One vendor representative indicated that much of the underlying effects of this proposal already exist in the ir 
products to handle the process control inherent in M. They indicated further that they expect that this is the 
case with all M vendors. In a previous version of this proposal, two vendors were represented in the vote. One 
voted affirmatively, the other abstained, and no CONs were raised. In the version previous to this, three 
vendors were present, and all three voted in favor of the proposal. No CONS concerning vendor impact were 
raised at that time. Vendors are invited to comment further upon this! [In the final vote , only one vendor was 
present and They voted against it citing implementation difficulties. ABS 8/98] 

4.3 Techniques and Costs for Compliance Verification

None

4.4 Legal Considerations

None

5. Closely Related Standards Activities

5.1 Other X11 Proposals Under Consideration 

X 11.6, the MWAPI continues to evolve. Modifications to this standard need to be examined to 
make sure that the two standards remain compatible in their event processing. 



Event Processing X11/1998-28
August 10, 1998

X11/SC13/1998-4, NEW $REFERENCE, or similar functionality, will likely be desired by people writing 
event handlers which modify globals. [As noted earlier this is now at MDC-A. ABS 8/98] . 

5.2 Other Related Standards Efforts

None

5.3 Recommendations for Coordinating Liaison

None

6. Associated Documents

X11.6-l99S, M Windowing API, defines synchronous event processing used for windowing. 

X11/SC13/1998-4, NEW $REFERENCE, is referenced by this document, but is not a 
dependency. 

Historical documents dealing with event processing include: 
??? (Oct 22, 1991) Event Management (Alfredo Garcia) 
X11/SC1/91-4 Proposal for Event Processing in MUMPS 
X11/SC1/91-81 Error Processing 
X11/SC1/91-82 Summary of differences between X11/SC1/91-43 

and X11/SC1/91-81  
X11/SC1/TG19/91-3 Synchronous Event Processing 
X11/SC1/TG19/91-3A Asynchronous Event Processing 
X11/SC15/TG1/91-1 Error Processing
X11/SC15/TG4/92-3 Synchronous Event Processing 
X11/SC15/TG4/WG1/92-4 Unified Event Processing Proposal
X11/SC15/TG4/WG1/92-6 Notes on Event Processing for MUMPS 
X11/SC15/TG4/WG1/92-7 Interprocess Communication using Event Queue

7. Issues, Pros and Cons, and Discussion

October 1995, New Orleans 
Discussion of how to handle event processing in SC15/TG4, Event Processing. The basic ideas 
of this proposal were laid out and an author was appointed. 

March 1996, Boston 
No document was available for this meeting, but there was additional informal discussion of the 
proposal ideas. 

September 1996, Toronto 
Discussion in Task Group indicated that this proposal was a good start, but needed to be fleshed 
out, pending SC approval. In particular, several suggestions were made: 

Event Processing X11/1998-28
August 10, 1998

X11/SC13/1998-4, NEW $REFERENCE, or similar functionality, will likely be desired by people writing 
event handlers which modify globals. [As noted earlier this is now at MDC-A. ABS 8/98] . 

5.2 Other Related Standards Efforts

None

5.3 Recommendations for Coordinating Liaison

None

6. Associated Documents

X11.6-l99S, M Windowing API, defines synchronous event processing used for windowing. 

X11/SC13/1998-4, NEW $REFERENCE, is referenced by this document, but is not a 
dependency. 

Historical documents dealing with event processing include: 
??? (Oct 22, 1991) Event Management (Alfredo Garcia) 
X11/SC1/91-4 Proposal for Event Processing in MUMPS 
X11/SC1/91-81 Error Processing 
X11/SC1/91-82 Summary of differences between X11/SC1/91-43 

and X11/SC1/91-81  
X11/SC1/TG19/91-3 Synchronous Event Processing 
X11/SC1/TG19/91-3A Asynchronous Event Processing 
X11/SC15/TG1/91-1 Error Processing
X11/SC15/TG4/92-3 Synchronous Event Processing 
X11/SC15/TG4/WG1/92-4 Unified Event Processing Proposal
X11/SC15/TG4/WG1/92-6 Notes on Event Processing for MUMPS 
X11/SC15/TG4/WG1/92-7 Interprocess Communication using Event Queue

7. Issues, Pros and Cons, and Discussion

October 1995, New Orleans 
Discussion of how to handle event processing in SC15/TG4, Event Processing. The basic ideas 
of this proposal were laid out and an author was appointed. 

March 1996, Boston 
No document was available for this meeting, but there was additional informal discussion of the 
proposal ideas. 

September 1996, Toronto 
Discussion in Task Group indicated that this proposal was a good start, but needed to be fleshed 
out, pending SC approval. In particular, several suggestions were made: 



Event Processing X11/1998-28
August 10, 1998

1. Additional evclasses should be considered for inter-process communications (may use 
COM), power fail identification (ditto), notification of error trapping (separate from error 
handling?) and "control-C" behavior. 

2. evclass specific behavior is lacking in the formalism. 
3. ABLOCKs should be counted in the manner of incremental LOCKs, with a corresponding 

number of AUNBLOCKs required to remove the block. 
4. There should be an automatic implicit BLOCK of all (or, if prioritization is used all of this or 

lower priority) events when entering an ASYNC handler, with an implicit UNBLOCK of any 
events not explicitly UNBLOCKed by the handler when it exits . 

5. An asynchronous event handler should stack $TEST, and $REFERENCE, at least. It is noteworthy that no 
other stack frames save $REFERENCE. 

6. Metasymbols timerno and eventno should be changed to timerid and eventid, respectively. 
7. Priority levels for interrupts should be considered. 
8. An event queue for each evclass should be considered, rather than a single event queue. 
9. Timers might be extended to the form in X11/SC15/TG4/93-3, using ACTIVE, INTERVAL 

and REMAIN. 
10. The history and related documents sections are clearly deficient! 
11. The formalism might be rewritten to include a discussion of behavior (akin to that used in 

Transaction Processing), thus eliminating redundancy. 
12. It might be nice if all names began with E (EABLOCK, EAUNBLOCK, ... ) . 
13. The status of these things when a process is initiated and halted need to be explicitly 

addressed. 
14. It would be desirable to have the status of block/unblock and event start/stop available somewhere (e.g., 

^$JOB ($JOB,"EASTART'». 
15. In ABLOCK, evclass needs to reserve all other names. 
16. Several areas should be rewritten for clarity. I
In addition, the Subcommittee raised the following instructive PROs and CONs: 
PRO CON

1) Good Start 1) Does not deal with process context

2) Long wanted and requested 2) Should stack blocks and unblocks

3) Need implicit block when entering event handler and unblock when 
exiting

4) History/Associated documents inadequate
These issues are considered in the next version of the document 

March 1997, San Diego 
The proposal, as published prior to the meeting addresses concerns 1-6, 10-11, 13, and 15-16. 
Concern 7 (priority levels) was not addressed because of unanswered questions (see below) 
Concern 8 (event queues per event class) was considered but rejected because of loss of sequencing 
information. 
Concern 9 was considered but rejected because it was believed unnecessary. 
Concerns 12..and 14 were left to straw polls (see below). 
Several straw polls are suggested prior to the meeting. The results of the straw polls taken at the 
Task Group meeting are shown in italics following the questions.: 
• Are event priorities desirable (Y or N) How should they be assigned to standard, vendor- and 

user-defined events? Do we rank event classes (POWER, INTERRUPT, COMM, TIMER, 
IPC, USER, with Z... stuck whereever?)? Can different priorities exist within an event class? 
No event priorities are required. 

• Is it necessary to stack $REFERENCE? (Y or N) No, the overhead cost is too high given that 
many (most?) event handlers will not modify globals, and those that do should be able to use 
NEW $REFERENCE to protect the naked indicator. 

• Should AB[LOCK], AUNB[LOCK], ASTA[RT] and ASTO[P] be changed to EAB[LOCK], 

Event Processing X11/1998-28
August 10, 1998

1. Additional evclasses should be considered for inter-process communications (may use 
COM), power fail identification (ditto), notification of error trapping (separate from error 
handling?) and "control-C" behavior. 

2. evclass specific behavior is lacking in the formalism. 
3. ABLOCKs should be counted in the manner of incremental LOCKs, with a corresponding 

number of AUNBLOCKs required to remove the block. 
4. There should be an automatic implicit BLOCK of all (or, if prioritization is used all of this or 

lower priority) events when entering an ASYNC handler, with an implicit UNBLOCK of any 
events not explicitly UNBLOCKed by the handler when it exits . 

5. An asynchronous event handler should stack $TEST, and $REFERENCE, at least. It is noteworthy that no 
other stack frames save $REFERENCE. 

6. Metasymbols timerno and eventno should be changed to timerid and eventid, respectively. 
7. Priority levels for interrupts should be considered. 
8. An event queue for each evclass should be considered, rather than a single event queue. 
9. Timers might be extended to the form in X11/SC15/TG4/93-3, using ACTIVE, INTERVAL 

and REMAIN. 
10. The history and related documents sections are clearly deficient! 
11. The formalism might be rewritten to include a discussion of behavior (akin to that used in 

Transaction Processing), thus eliminating redundancy. 
12. It might be nice if all names began with E (EABLOCK, EAUNBLOCK, ... ) . 
13. The status of these things when a process is initiated and halted need to be explicitly 

addressed. 
14. It would be desirable to have the status of block/unblock and event start/stop available somewhere (e.g., 

^$JOB ($JOB,"EASTART'». 
15. In ABLOCK, evclass needs to reserve all other names. 
16. Several areas should be rewritten for clarity. I
In addition, the Subcommittee raised the following instructive PROs and CONs: 
PRO CON

1) Good Start 1) Does not deal with process context

2) Long wanted and requested 2) Should stack blocks and unblocks

3) Need implicit block when entering event handler and unblock when 
exiting

4) History/Associated documents inadequate
These issues are considered in the next version of the document 

March 1997, San Diego 
The proposal, as published prior to the meeting addresses concerns 1-6, 10-11, 13, and 15-16. 
Concern 7 (priority levels) was not addressed because of unanswered questions (see below) 
Concern 8 (event queues per event class) was considered but rejected because of loss of sequencing 
information. 
Concern 9 was considered but rejected because it was believed unnecessary. 
Concerns 12..and 14 were left to straw polls (see below). 
Several straw polls are suggested prior to the meeting. The results of the straw polls taken at the 
Task Group meeting are shown in italics following the questions.: 
• Are event priorities desirable (Y or N) How should they be assigned to standard, vendor- and 

user-defined events? Do we rank event classes (POWER, INTERRUPT, COMM, TIMER, 
IPC, USER, with Z... stuck whereever?)? Can different priorities exist within an event class? 
No event priorities are required. 

• Is it necessary to stack $REFERENCE? (Y or N) No, the overhead cost is too high given that 
many (most?) event handlers will not modify globals, and those that do should be able to use 
NEW $REFERENCE to protect the naked indicator. 

• Should AB[LOCK], AUNB[LOCK], ASTA[RT] and ASTO[P] be changed to EAB[LOCK], 



Event Processing X11/1998-28
August 10, 1998

EAUNB[LOCK], EASTA[RT] and EASTO[P], or something else less ungainly (five letter 
abbreviations of six letter words seems ridiculous). Leave them as they are. 

• Should there be a separate queue for each event class? (Is this feasible?) No (it would 
require event priorities), but there should be separate queues for synchronous and 
asynchronous events. 

• Should the status (enabled synch, enabled asynch, blocked asynch, disabled) of each event 
class be available somehow in ^$JOB? How? These should be stored in ^$EVENT (but see 
below) using some appropriate nodes. Separate into status (enabled synch, enabled asynch, 
disabled) and block count. 

A number of changes were suggested at the Task Group meeting. The minutes of that meeting 
(X11/SCI5/TG4/97-3) can be consulted for a complete list, but the substantive changes were: 
1. Extend the TIMER event class to support free-running timers in addition to one-shot timers. 
2. Add a HALT event class to support job termination events. 
3. AUNBLOCK should unblock all events, including those which were explicitly unblocked in 

the event handler. These can be explicitly excluded if necessary, and it simplifies the 
behavior of AUNBLOCK. 

4. For each registered event, the count of BLOCKs and the mode (enabled asynchronous, 
enabled synchronous or disabled) should be exposed (read-only) in the ^$EVENT ssvn. (but see below)

5. There should be separate event queues for synchronous and asynchronous events. 
Subcommittee approved the document as a replacement Subcommittee Type B by a vote of 20:0:4. There were
three PROs ("Long wanted and requested", cited 9 times; "Separates event from error processing", cited 4 
times; and "Has been mostly implemented", cited 4 times) and no CONs raised. 

September 1997, Chicago 
The document, as published prior to the meeting includes all the changes recommended by the Task Group and
Subcommittee, including the five noted above, though change number  4 was altered. The count of BLOCKs 
and mode are not per-event states, but are rather per-process states. A given event (say TIMER) may be 
registered by several processes, blocked or, unblocked independently by those process (with blocked events 
being stored in the per-process event queue), and may, in fact, be handled synchronously by some processes 
and asynchronously by others. For this reason, the block count and mode were placed in read-only nodes of 
^$JOB, rather than ^$EVENT. This document is the first to cite error codes M102 (Simultaneous synchronous 
and asynchronous event class), MI03 (Invalid event ID) and M104 (IPC event ID is not $JOB). 

When reviewing the document, the Task Group noted several minor errors (e.g., missing quotation marks and 
inconsistent use of variable names), and clarified the wording regarding unsupported evlcasses and evids. In 
addition, a series of straw polls conducted in the Task Group indicated that the timer should retain the three 
control parameters (INTERVAL, AUTO and ACTIVE); rather than taking a. four parameter (INTERVAL, 
RESET, MODE and ACTIVE) approach. It was also decided that active timers never stop (they count down to 
zero and continue negatively). A set of corrigenda were prepared to reflect these changes and they were 
presented (on overhead slides) to the Subcommittee when considering the document for replacement Type B 
status. The motion, including the corrigenda, passed. No further changes will be made prior to the March 
meeting. Passed 22:1:2, with the one Pro (Needed) cited nine times and the one Con (Big job for some vendors)
cited three times. 

March 1998, Atlanta 

Proposed and passed as Subcommittee Type A without modifications. Passed 18:0:2. Pros and Cons are shown 
below with the number of citations in parentheses. 

PRO CON

1) Needed functionality (4) 1) Big job for some vendors (3)

2) Compliments Object Usage proposal (2) 2) Not needed for Object Usage (1)

Event Processing X11/1998-28
August 10, 1998

EAUNB[LOCK], EASTA[RT] and EASTO[P], or something else less ungainly (five letter 
abbreviations of six letter words seems ridiculous). Leave them as they are. 

• Should there be a separate queue for each event class? (Is this feasible?) No (it would 
require event priorities), but there should be separate queues for synchronous and 
asynchronous events. 

• Should the status (enabled synch, enabled asynch, blocked asynch, disabled) of each event 
class be available somehow in ^$JOB? How? These should be stored in ^$EVENT (but see 
below) using some appropriate nodes. Separate into status (enabled synch, enabled asynch, 
disabled) and block count. 

A number of changes were suggested at the Task Group meeting. The minutes of that meeting 
(X11/SCI5/TG4/97-3) can be consulted for a complete list, but the substantive changes were: 
1. Extend the TIMER event class to support free-running timers in addition to one-shot timers. 
2. Add a HALT event class to support job termination events. 
3. AUNBLOCK should unblock all events, including those which were explicitly unblocked in 

the event handler. These can be explicitly excluded if necessary, and it simplifies the 
behavior of AUNBLOCK. 

4. For each registered event, the count of BLOCKs and the mode (enabled asynchronous, 
enabled synchronous or disabled) should be exposed (read-only) in the ^$EVENT ssvn. (but see below)

5. There should be separate event queues for synchronous and asynchronous events. 
Subcommittee approved the document as a replacement Subcommittee Type B by a vote of 20:0:4. There were
three PROs ("Long wanted and requested", cited 9 times; "Separates event from error processing", cited 4 
times; and "Has been mostly implemented", cited 4 times) and no CONs raised. 

September 1997, Chicago 
The document, as published prior to the meeting includes all the changes recommended by the Task Group and
Subcommittee, including the five noted above, though change number  4 was altered. The count of BLOCKs 
and mode are not per-event states, but are rather per-process states. A given event (say TIMER) may be 
registered by several processes, blocked or, unblocked independently by those process (with blocked events 
being stored in the per-process event queue), and may, in fact, be handled synchronously by some processes 
and asynchronously by others. For this reason, the block count and mode were placed in read-only nodes of 
^$JOB, rather than ^$EVENT. This document is the first to cite error codes M102 (Simultaneous synchronous 
and asynchronous event class), MI03 (Invalid event ID) and M104 (IPC event ID is not $JOB). 

When reviewing the document, the Task Group noted several minor errors (e.g., missing quotation marks and 
inconsistent use of variable names), and clarified the wording regarding unsupported evlcasses and evids. In 
addition, a series of straw polls conducted in the Task Group indicated that the timer should retain the three 
control parameters (INTERVAL, AUTO and ACTIVE); rather than taking a. four parameter (INTERVAL, 
RESET, MODE and ACTIVE) approach. It was also decided that active timers never stop (they count down to 
zero and continue negatively). A set of corrigenda were prepared to reflect these changes and they were 
presented (on overhead slides) to the Subcommittee when considering the document for replacement Type B 
status. The motion, including the corrigenda, passed. No further changes will be made prior to the March 
meeting. Passed 22:1:2, with the one Pro (Needed) cited nine times and the one Con (Big job for some vendors)
cited three times. 

March 1998, Atlanta 

Proposed and passed as Subcommittee Type A without modifications. Passed 18:0:2. Pros and Cons are shown 
below with the number of citations in parentheses. 

PRO CON

1) Needed functionality (4) 1) Big job for some vendors (3)

2) Compliments Object Usage proposal (2) 2) Not needed for Object Usage (1)



Event Processing X11/1998-28
August 10, 1998

June 1998, Boston

Proposed and passed as MDC Type A with two editorial corrections (one missing word, one extra word) . 
Passed 14:1:4 with the following Pros and Cons (citations noted in parentheses): 

PRO CON 

1) Needed functionality (4) 1) Expensive to implement (1)

2) Complements Object Usage proposal (4)

3) Would have been implemented (3)

4) Good starting list of events (3)

5) Easy to add more events (3)

Event Processing X11/1998-28
August 10, 1998

June 1998, Boston

Proposed and passed as MDC Type A with two editorial corrections (one missing word, one extra word) . 
Passed 14:1:4 with the following Pros and Cons (citations noted in parentheses): 

PRO CON 

1) Needed functionality (4) 1) Expensive to implement (1)

2) Complements Object Usage proposal (4)

3) Would have been implemented (3)

4) Good starting list of events (3)

5) Easy to add more events (3)


