
Canvass Document for ANSI/MDC X11.1-1994

American National Standard
for Information Systems -

Programming Languages -

M

Sponsor
MUMPS Development Committee

Canvassed Summer 1994
American National Standards Institute, Inc

Abstract This standard contains a three-section description of various aspects of the M
computer programming language. Section 1, the M Language Specification, consists
of a stylized English narrative definition of the M language. Section 2, the M
Portability Requirements, identifies constraints on the implementation and use of the
language for the benefit of parties interested in achieving M application code
portability. Section 3 is a binding to ANSI X3.64 (Terminal Device Control
Mnemonics).

ii M Programming Language ANSI X11.1 Canvass Version 1

American
National
Standard

Approval of an American National Standard requires verification by ANSI that
the requirements for due process, consensus, and other criteria for approval
have been met by the standards developer.

Consensus is established when, in the judgment of the ANSI Board of
Standards Review, substantial agreement has been reached by directly and
materially affected interests. Substantial agreement means much more than
a simple majority, but not necessarily unanimity. Consensus requires that all
views and objections be considered, and that a concerted effort be made
toward their resolution.

The use of American National Standards is completely voluntary; their
existence does not in any respect preclude anyone, whether he has
approved the standards or not, from manufacturing, marketing, purchasing,
or using products, processes, or procedures not conforming to the standards.

The American National Standards Institute does not develop standards and
will in no circumstances give an interpretation of any American National
Standard. Moreover, no person shall have the right or authority to issue an
interpretation of an American National Standard in the name of the American
National Standards Institute. Requests for interpretations should be
addressed to the secretariat or sponsor whose name appears on the title
page of this standard.

CAUTION NOTICE: This American National Standard may be revised or
withdrawn at any time. The procedures of the American National Standards
Institute require that action be taken to reaffirm, revise, or withdraw this
standard no later than fiver years from the date of approval. Purchasers of
American National Standards may receive current information on all
standards by calling or writing the American National Standards Institute.

Published by
M Technology Association
1738 Elton Road, Suite 205
Silver Spring, MD 20903
(301) 431-4070

Copyright © 1994 by The MUMPS Development Committee.
All rights reserved.

No part of this publication may be reproduced in any form,
in an electronic retrieval system or otherwise, without
the prior written permission of the publisher.

Printed in the United States of America

Table of Contents

1. Scope . 1

2. Normative References . 1

3. Conformance . 2
3.1 Implementations . 2
3.2 Programs . 2

ANS I X11.1 Canvass Version 1 M Programming Language iii

4. Definitions . 3

5. Metalanguage Description . 6

6. Routine routine . 7
6.1 Routine head routinehead . 7
6.2 Routine body routinebody . 7

6.2.1 Level line levelline . 7
6.2.2 Formal line formalline . 8
6.2.3 Label label . 8
6.2.4 Label separator ls . 8
6.2.5 Line body linebody . 8

6.3 Routine execution . 8
6.3.1 Transaction processing . 9
6.3.2 Error processing . 10

6.4 Embedded programs . 11

7. Expression expr . 11
7.1 Expression atom expratom . 12

7.1.1 Variables . 12
7.1.2 Variable name glvn . 12

7.1.2.1 Local variable name lvn . 12
7.1.2.2 Local variable handling . 13
7.1.2.3 Process-Stack . 15
7.1.2.4 Global variable name gvn . 15

7.1.3 Structured system variable ssvn . 16
7.1.3.1 ^$CHARACTER . 17
7.1.3.2 ^$DEVICE . 18
7.1.3.3 ^$GLOBAL . 18
7.1.3.4 ^$JOB . 19
7.1.3.5 ^$LOCK . 19
7.1.3.6 ^$ROUTINE . 19
7.1.3.7 ^$SYSTEM . 20
7.1.3.8 ^$Z[unspecified] . 20
7.1.3.9 ssvns specifying default env ironm ents . 20

7.1.4 Expression item expritem . 21
7.1.4.1 String literal strlit . 21
7.1.4.2 Numeric literal num lit . 21
7.1.4.3 Numeric data values . 21
7.1.4.4 Meaning of num lit . 22
7.1.4.5 Numeric interpretation of data . 22
7.1.4.6 Integer interpretation . 23
7.1.4.7 Truth-value interpretation . 23
7.1.4.8 Extrinsic function exfunc . 23
7.1.4.9 Extrinsic special variable exvar . 23
7.1.4.10 Intrinsic special v ariable nam es svn . 24
7.1.4.11 Unary operator unaryop . 27
7.1.4.12 Name value namevalue . 28

7.1.5 Intrinsic function function . 28
7.1.5.1 $ASCII . 29
7.1.5.2 $CHAR . 29
7.1.5.3 $DATA . 29
7.1.5.4 $EXTRACT . 30
7.1.5.5 $FIND . 30
7.1.5.6 $FNUMBER . 30
7.1.5.7 $GET . 32
7.1.5.8 $JUSTIFY . 32
7.1.5.9 $LENGTH . 32
7.1.5.10 $NAME . 33
7.1.5.11 $ORDER . 33
7.1.5.12 $PIECE . 34
7.1.5.13 $QLENGTH . 35
7.1.5.14 $QSUBSCRIPT . 35
7.1.5.15 $QUERY . 36
7.1.5.16 $RANDOM . 36
7.1.5.17 $REVERSE . 36
7.1.5.18 $SELECT . 37
7.1.5.19 $STACK . 37
7.1.5.20 $TEXT . 38
7.1.5.21 $TRANSLATE . 38

iv M Programming Language ANSI X11.1 Canvass Version 1

7.1.5.22 $VIEW . 39
7.1.5.23 $Z . 39

7.2 Expression tail exprtail . 39
7.2.1 Binary operator binaryop . 39

7.2.1.1 Concatenation operator . 40
7.2.1.2 Arithmetic binary operators . 40

7.2.2 Truth operator truthop . 40
7.2.2.1 Relational operator relation . 40
7.2.2.2 Numeric relations . 40
7.2.2.3 String relations . 41
7.2.2.4 Logical operator logicalop . 41

7.2.3 Pattern match pattern . 41

8 Commands . 43
8.1 General comm and rules . 43

8.1.1 Spaces in comm ands . 44
8.1.2 Comment comment . 44
8.1.3 Comm and argument indirection . 44
8.1.4 Post conditional postcond . 45
8.1.5 Command tim eout timeout . 45
8.1.6 Line reference lineref . 45

8.1.6.1 Entry reference entryref . 46
8.1.6.2 Label reference labelref . 46
8.1.6.3 External reference externref . 47

8.1.7 Parameter passing . 47
8.2 Comm and definitions . 48

8.2.1 BREAK . 48
8.2.2 CLOSE . 49
8.2.3 DO . 49
8.2.4 ELSE . 50
8.2.5 FOR . 50
8.2.6 GOTO . 52
8.2.7 HALT . 52
8.2.8 HANG . 53
8.2.9 IF . 53
8.2.10 JOB . 53
8.2.11 KILL . 54
8.2.12 LOCK . 54
8.2.13 MERGE . 56
8.2.14 NEW . 57
8.2.15 OPEN . 57
8.2.16 QUIT . 58
8.2.17 READ . 60
8.2.18 SET . 61
8.2.19 TCOMM IT . 63
8.2.20 TRESTART . 63
8.2.21 TROLLBACK . 64
8.2.22 TSTART . 64
8.2.23 USE . 65
8.2.24 VIEW . 65
8.2.25 W RITE . 65
8.2.26 XECUTE . 66
8.2.27 Z . 67

9. Character Set Profile charset . 67

Section 2: M Portability Requirem ents . 68

Introduction . 68

1 Character Set . 69

2 Expression elem ents . 69
2.1 Names . 69
2.2 External routines and names . 69
2.3 Local variables . 69

2.3.1 Number of local variables . 69
2.3.2 Number of subscripts . 69
2.3.3 Values of subscripts . 69

2.4 Global variables . 69

ANS I X11.1 Canvass Version 1 M Programming Language v

2.4.1 Number of global variables . 69
2.4.2 Number of subscripts . 70
2.4.3 Values of subscripts . 70
2.4.4 Number of nodes . 70

2.5 Data types . 70
2.6 Number range . 70
2.7 Integers . 70
2.8 Character strings . 70
2.9 Special variables . 71

3 Expressions . 71
3.1 Nesting of expressions . 71
3.2 Results . 71
3.3 External References . 71

4 Routines and comm and lines . 71
4.1 Comm and lines . 71
4.2 Number of com mand lines . 71
4.3 Number of com mands . 71
4.4 Labels . 71
4.5 Num ber of labels . 71
4.6 Number of routines . 72

5 Ex ternal routine calls . 72

6 Character Set Profiles . 72

7 Indirection . 72

8 Storage space restrictions . 72

9 Process-Stack . 72

10 Formats . 73
10.1 mnemonicspace . 73
10.2 controlm nem onic . 73
10.3 Param eters . 73

11 Transaction processing . 73
11.1 Number of modif ications in a TRANSACTION . 73
11.2 Number of nested TSTARTs within a TRANSACTION . 73

12 Other portability requirements . 73

Section 3: X3.64 Binding . 75

Introduction . 75

1 The binding . 76
1.1 Control-functions with an effect on $X or $Y . 76
1.2 Control-functions with an effect on $KEY . 77
1.3 Control-functions with an effect on $DEVICE . 77
1.4 Open-ended definitions . 77

2 Portability issues . 78
2.1 Implementation . 79
2.2 Application . 79

3 Conformance . 79

Annex A (normative) . 80

Annex B (informative) . 82

Annex C (Informative) . 83

Annex D (Informative) . 85

Annex E (informative) . 87

vi M Programming Language ANSI X11.1 Canvass Version 1

Annex F (informative) . 89

Annex G (informative) . 91

Annex H (informative) . 92

Index . 93

ANS I X11.1 Canvass Version 1 M Programming Language v ii

Foreword (This Foreword is not part of Am erican National Standard MDC X11.1-1994.)

M is a high-level interactiv e com puter program ming language dev eloped for use in com plex data
handling operations. It is also known as MUMPS, an acronym for Massachusetts General
Hospital Utility Multi-Programm ing System. The MUMPS Dev elopment Com mittee has accepted
responsibili ty for creation and maintenance of the language since early 1973. The first ANSI
approved standard was approved Sept. 15, 1977 via the canvass method. The standard was
rev ised and approved again on Nov ember 15, 1984, and again on Nov ember 11, 1990.
Subsequently, the MUMPS Dev elopment Com mittee has met several times annually to consider
revisions to the standard.

Docum ent preparation was performed by the MUM PS Dev elopment Com mittee. Suggestions for
improvement of this standard are welcome. They should be submitted to the MUMPS
Development Committee, c /o MDC Secretariat, 1738 Elton Road, Suite 205, Silver Spring, MD
20903.

viii M Programming Language ANSI X11.1 Canvass Version 1

Introduction

Section 1 consists of nine clauses that describe the MUMPS language. Clause 1 describes the
metalanguage used in the remainder of Section 1 for the static syntax. The remaining clauses
describe the static syntax and overall semantics of the language. The distinction between
"static" and "dynamic" syntax is as follows. The static syntax describes the sequence of
characters in a routine as it appears on a tape in routine interchange or on a listing. The
dynamic syntax describes the sequence of characters that would be encountered by an
interpreter during execution of the routine. (There is no requirement that MUMPS actually be
interpreted). The dynamic syntax takes into account transfers of control and values produced by
indirection.

ANS I X11.1 Canvass Version 1 M Programming Language 1

1. Scope

This standard describes the M programm ing language.

2. Normative References

The following standard(s) contain provisions which, through reference in this text, constitute provisions of
this standard. At the tim e of pub lication, the editions indicated were valid. All standards are subject to
rev ision, and parties to agreements based on this standard are encouraged to inv estigate the possibility
of applying the m ost recent editions of the standard(s) indicated below. Members of ANSI maintain
registers of the currently v alid standards.

ANSI X3.135-1992 Information Systems - Database Language - SQL
ANSI X3.4-1990 (ASCII Character Set)
ANSI X3.64-1979 R1990 (ANSI Term inal Dev ice Control Mnem onics)

2 M Programming Language ANSI X11.1 Canvass Version 1

3. Conformance

3.1 Implementations

A conforming implementation shall

a) correctly execute all programs conforming to both the Standard and the implementation defined
features of the implementation

b) reject all code that contains errors, where such error detection is required by the Standard

c) be accompanied by a document which provides a definition of all implementation-defined features
and a conform ance statem ent of the form :

"xxx version v conforms to X11.1-yyyy with the following exceptions:
...
Supported Character Set Prof iles are ...
Uniqueness of the v alues of $SYSTEM is guaranteed by ..."

where the exceptions are those components of the implem entation which violate this Standard or for
which minimum values are given that are less than those defined in Section 2.

An MDC conforming implementation shall be a conforming implem entation except that the conforming
document shall be this Standard together with any such current MDC docum ents that the vendor chooses
to implem ent. The conformance statem ent shall be of the form :

"xxx version v conforms to X11.1-yyyy, as m odified by the following MDC docum ents:
ddd (MDC status m)
with the following exceptions:
...

Supported Character Set Prof iles are ...
Uniqueness of the v alues of $SYSTEM is guaranteed by ..."

An MDC strictly conforming implementation is an MDC conforming implementation whose MDC
modification docum ents only hav e MDC Type A status and which has no exceptions.

A <National Body> ... implementation is an implem entation conform ing to one of the abov e options in
which the requirements of Section 2 are replaced by the <National Body> requirements and other
extensions required by the <National Body> are implem ented.

An implementation may claim more than one level of conformance if it provides a switch by which the
user is able to select the conform ance lev el.

3.2 Programs

A strictly conforming program shall use only the constructs specified in Section 1 of this standard, shall
not exceed the limits and restrictions specified in Section 2 of the Standard and shall not depend on
extensions of an im plementation or implementation-dependent features.

A strictly conforming non-ASCII program is a strictly conform ing program , except that the restrictions to
the ASCII character set in Section 2 are removed.

A strictly conforming <National Body> program is a strictly conforming program, except that the
restrictions in Section 2 are replaced by those specified by the <National Body> and any extensions
specified by the <National Body> m ay be used.

A conforming program is one that is acceptable to a conforming implementation.

ANS I X11.1 Canvass Version 1 M Programming Language 3

4. Definitions

For the purposes of this standard, the following definitions apply.

4.1 argument (of a comm and): M comm and
words are verbs. Their arguments are the
objects on which they act.
4.2 array: M arrays, unlike those of most other
computer languages, are trees of unlimited
depth and breadth. Every node may optiona lly
contain a v alue and may also hav e zero or m ore
descendant nodes. The name of a subscripted
variable refers to the root, and the nth subscript
refers to a node on the nth lev el. Arrays vary in
size as their nodes are set and killed. See
scalar, subscript.
4.3 atom: A singular, most-basic element of a
construction. For example, some atoms in an
expression are names of variables and
funct ions, num bers, and string literals.
4.4 block: One or more lines of code within a
routine that execute in line as a unit. The
argumentless DO command introduces a block,
and each of its lines begins with one or more
periods. Blocks may be nested. See lev el.
4.5 call by reference: A calling program passes
a reference to its actual parameter. If the called
subroutine or function changes its formal
parameter, the change affects the actual
parameter as well. Lim ited to unsubscripted
names of local variables, either scalar or array.
See also call by value.
4.6 call by value: A calling program passes the
value of its actual parameter to a subroutine or
function. Limited to a single value, that is, the
value of a scalar variable or of one node in an
array. See also call by reference.
4.7 call: A procedural process of transferring
execution control to a callee by a caller.
4.8 callee: The recipient of a call.
4.9 caller: The originator of a call.
4.10 command: A command word (a verb), an
optional conditional expression, and zero or
more arguments. Commands initiate all actions
in M.
4.11 computationally equivalent: The result of
a procedure is the same as if the code provided
were executed by a M program without error.
However, there is no implication that executing
the code provided is the method by which the
result is achieved.
4.12 concatenation: The act or result of joining
two strings together to make one string.
4.13 conditional expression: Guards a
comm and (sometimes an argument of a
command). Only if the expression's value is true
does the com mand execute (on the argum ent).
See truthvalue.
4.14 contains: a logical operator that tests
whether one string is a substring of another.
4.15 data-cell: in the formal model of M
execution. It contains the value and subscripts
(if any) of a variable, but not the name of the
variable. Many variable names m ay point to a
data-cell due to parameters passed by
reference. See also name-table, value-table.
4.16 descriptor: uniquely defines an elem ent. It
comprises various characteristics of the element
that distinguish the element from all other
sim ilar e lem ents.

4.17 device-dependent: That which depends on
the device in question.
4.18 empty: an entity that contains nothing. For
exam ple, an empty string contains no
characters; it exists but has zero length. See
also null string, NULL character.
4.19 environment: a set of distinct names. For
exam ple, in one global environment all global
variables have distinct names. Similar to a
directory in many operating systems.
4.20 evaluate: to derive a v alue.
4.21 execute: to perform the operations
specified by the comm ands of the language.
4.22 extract: to retrieve part of a v alue, typica lly
contiguous characters from a string.
4.23 extrinsic: a function or variable defined
and created by M code, distinct from the
primitive functions or special variables of the
language. See intrinsic.
4.24 follow: to come after according to some
ordering sequence. See also sorts after.
4.25 function: a value-producing subroutine
whose value is determ ined by its argum ents.
Intrinsic functions are defined elements of the
language, while ex trinsic functions are
programmed in M.
4.26 global variable: a scalar or array v ariable
that is public, available to more than one job,
and persistent, outliving the job. See local
variable.
4.27 graphic: a v isible character (as opposed to
most control characters).
4.28 hidden: unseen. The NEW command hides
local variables. Also pertains to unseen
elements invoked to define the operation of
som e commands and functions.
4.29 intrinsic: a prim itive function or variable
defined by the language standard as opposed to
one defined by M code. See extrinsic.
4.30 job: A single operating system process
running a M program.
4.31 label: Identifies a line of code.
4.32 level: The depth of nesting of a block of
code lines. The first line of a routine is at level 1
and successively nested blocks are at levels 2,
3, . . . Formally, the level of a line is one plus li.
Visually, li periods follow the label (if any) and
precede the body of the line. See block.
4.33 local variable: A scalar or array v ariable
that is private to one job, not available to other
jobs, and disappears when the job term inates.
See global variable.
4.34 lock: To claim or obtain exclusive access
to a resource.
4.35 mapping: The logical association or
substitution of one element for another.
4.36 map: The act of mapping.
4.37 metalanguage: Underlined terms used in
the formal description of the M language.
4.38 modulo: An arithmetic operator that
produces the remainder after division of one
operand by another. There are many
interpretations of how this operation is
perform ed in the general com puting fie ld. M
explicitly defines the result of this computation.
4.39 multidimensional: Used in reference to

4 M Programming Language ANSI X11.1 Canvass Version 1

arrays to indicate that the array can have more
than one dimension.
4.40 naked: A shorthand reference to one level
of the tree forming a global array variable. The
full reference is defined dynamically.
4.41 name-table: In the formal model of M
execution, a set of variable nam es and their
pointers to data-cells.
4.42 node: One element of the tree forming an
array. It may have a value and it may have
descendants.
4.43 NULL character: The character that is
internally coded as code num ber 0 (zero). A
string may contain any number of occurrences
of this character (up to the max imum string
length). A string consisting of one NULL
character has a length of 1 (one).
4.44 null string: 1. A string consisting of 1 (one)
NULL character; 2. A string consisting of 0
(zero) characters.
4.45 object: An entity considered as a whole in
relation to other entities.
4.46 ow n: To have exclusive access to a
resource. In M this pertains to dev ices.
4.47 parameter: A qualifier of a comm and
modifies its behavior (for example by imposing
a time out), or augments its argument (for
example by setting characteristics of a dev ice).
Som e parameters are expressions, and some
have the form keyword=value. See argum ent.
4.48 parameter (of a function or subroutine):
The calling program prov ides actual param eters.
In the called function or subroutine, formal
param eters relate by posit ion to the caller's
actual arguments. See also call by reference,
call by value, parameter passing.
4.49 parameter passing: This alli terative phrase
refers to the association of actua l param eters
with formal parameters when calling a
subroutine or function.
4.50 partition: The random access m emory in
which a job runs.
4.51 piece: A part of a string, a sub-string
del im ited by chosen characters.
4.52 pointer: Indirection allows one M variable
to refer, or point to, another variable or the
argument of a command.
4.53 portable: M code that conforms to the
portability section of the standard.
4.54 post-conditional: See conditional
expression.
4.55 primitives: The basic elements of the
language.
4.56 process-stack: In the formal model of M
execution, a push-down stack that controls the
execution flow and scope of v ariables.
4.57 relational: Pertaining to operators that
com pare the v alues of their operands.
4.58 scalar: Single-valued, without
descendants. See array.
4.59 scope (of a comm and): The range of other
commands affected by the comm and, as in loop
control, block structure, and conditional
execution.
4.60 scope (of a local variable): The range of
commands for which the variable is visible, from
its creation to its deletion, or from its
appearance in a NEW command to the end of
the subroutine, function, or block. Scope is not
textual, but dynamic, controlled by the flow of

execution.
4.61 sorts after: To come after according to an
ordering sequence that is based on a collating
algorithm. See also fol lows.
4.62 subscript: An expression whose value
specifies one node of an array. Its value m ay be
an integer, a floating point number, or any
string. Subscripts are sparse, that is, only those
that have been defined appear in the array. See
array, scalar.
4.63 truthvalue: The value of an expression
considered as a number. Non-zero is true, and
zero is false.
4.64 tuple: A sequence of a predetermined
number of descriptors (usually a name and a
series of subscripts) that identifies a mem ber of
a set.
4.65 type: M recognizes only one data type, the
string of variable length. Arithmetic operations
interpret strings as numbers, and logical
operations further interpret the numbers as true
or false. See also truthvalue.
4.66 unbound: In the formal model of M
execution, the disassociat ion of a variable's
name from its value.
4.67 undefined: Pertaining to a variable that is
not visible to a comm and.
4.68 unsubscripted: See scalar.
4.69 value-denoting: Representing or having a
value.
4.70 value-table: In the formal model of M
execution, a set of data-cells.
4.71 variable: M v ariables may be local or
global, scalar or array.

ANS I X11.1 Canvass Version 1 M Programming Language 5

6 M Programming Language ANSI X11.1 Canvass Version 1

5. Metalanguage Description

The primitives of the metalanguage are the ASCII characters. The metalanguage operators are defined
as fo llows:

Operator Meaning
 ::= definition
 [] option
 | | grouping
 ... optional indefinite repetition
 L list
 V value
 SP space

The following v isible representations of ASCII characters required in the defined syntactic objects are
used: SP (space), CR (carriage-return), LF (line-feed), and FF (form -feed).

In general, defined syntactic objects will have designators which are underlined nam es spelled with
lower case letters, e.g., name, expr, etc. Concatenation of syntactic objects is expressed by horizontal
juxtaposition, choice is expressed by v ertical jux taposition. The ::= sym bol denotes a syntactic def inition.
An optional element is enclosed in square brackets [], and three dots ... denote that the previous
element is optionally repeated any number of times. The definition of name, for example, is written:

 +)),
 name ::= * % * * digit * ...
 *ident * * ident *
 .))-

The vertical bars are used to group elements or to make a choice of elements more readable.

Special care is taken to avoid any danger of confusing the square brackets in the metalanguage with the
ASCII graphics] and [. Normally , the square brackets will stand for the metalanguage symbols.

The unary m etalanguage operator L denotes a list of one or more occurrences of the syntactic object
immediately to its right, with one com ma between each pair of occurrences. Thus,

L name is equivalent to name [, name]

The binary m etalanguage operator V places the constraint on the syntactic object to its lef t that it m ust
have a v alue which satisfies the syntax of the syntactic object to its right. For example, one m ight define
the syntax of a hypothetical EXAMPLE command with its argument list by

 examplecommand ::= EXAMPLE SP L exampleargument

where

 * expr *
 exampleargument ::= * *
 * @ expratom V L exampleargument *

This example states: after evaluation of indirection, the comm and argument list consists of any number
of exprs separated by commas. In the static syntax (i.e., prior to evaluation of indirection), occurrences
of @ expratom may stand in place of nonoverlapping sublists of command arguments. Usually, the text
accompanying a syntax description incorporating indirection will describe the syntax after all occurrences
of indirection have been evaluated.

ANS I X11.1 Canvass Version 1 M Programming Language 7

6. Routine routine

The routine is a string m ade up of the fo llowing sym bols:

The graphic, including the space character represented as SP, and also,
the carr iage-return character represented as CR,
the line-feed character represented as LF,
the form-feed character represented as FF.

Each routine begins with its routinehead, which contains the identifying routinename. The routinehead is
followed by the routinebody, which contains the code to be executed. The routinehead is not part of the
executed code.

 routine ::= routinehead routinebody

6.1 Routine head routinehead

 routinehead ::= routinename eol

 routinename ::= name

 +)),
 name ::= * % * * digit * ...
 * ident * * ident *
 .))-

 control ::= The ASCII/M codes 0-31 and 127 (see Annex A for the
definition of ASCII/M)

 digit ::= The ASCII/M codes 48-57 (characters '0' - '9')

 graphic ::= Those characters in the current charset which are not
control characters.

 ident ::= The ASCII/M codes 65-90 and 97-122 ('A'-'Z' and 'a'-'z')
are ident characters, all other characters in the range
0-127 are not ident characters. Additional characters,
with codes greater than 127, may be defined as ident
through the algorithm specified in
^$CHARACTER(charsetexpr,"IDENT")

 eol ::= CR LF

6.2 Routine body routinebody

The routinebody is a sequence of lines term inated by an eor. Each line starts with one ls which may be
preceded by an optional label and formallist. The ls is followed by zero or more li (level-indicator) which
are followed by zero or more commands and a term inating eol. If there is a comment it is separated
from the last command of a line by one or more spaces.

 routinebody ::= line ... eor

 line ::= * levelline *
 * formalline *

 eor ::= CR FF

6.2.1 Level line levelline

A levelline is a line that does not contain a formallist. A levelline may hav e a LEVEL greater than one.
The LEVEL of a line is the number plus one of li. Subclause 6.3 (Routine Execution) describes the effect
a line's LEVEL has on execution.

 levelline ::= [label] ls [li] ... linebody

 li ::= . [SP] ...

8 M Programming Language ANSI X11.1 Canvass Version 1

6.2.2 Formal line formalline

A formalline contains both a label and a formallist which is a (possibly empty) list of variable names.
These names may contain data passed to this subroutine (see 8.1.7 Parameter passing). A formallist
shall only be present on a line whose LEVEL is one, i.e., does not contain an li.

 formalline ::= label formallist ls linebody

 formallist ::= ([L name])

If any name is present more than once in the same formallist an error condition occurs with
ecode="M21".

6.2.3 Label label

Each occurrence of a label to the left of ls in a line is called a defining occurrence of label. An error
occurs with ecode = "M57" if there are two or more defining occurrences of label with the same spelling
in one routinebody.

 label ::= * name *
 * intlit *

6.2.4 Label separator ls

A label separator (ls) precedes the linebody of each line. A ls consists of one or more spaces. The
flexible num ber of spaces allows program mers to enhance the readabi lity of their program s.

 ls ::= SP ...

6.2.5 Line body linebody

The linebody consists of an optional sequence of commands and an optional comment. Note that the
comment always comes after any commands in the line (see 8.1.2 for m ore about comments). Individual
commands are separated by one or more spaces (see 8.1.1 for more about spaces in commands). The
end of the line is terminated by a CR LF character sequence.

 +)),
 * commands [cs comment] *
 * *
 linebody ::= * [commands cs] extsyntax * eol
 * *
 * comment *
 .))-

 commands ::= command [cs command] ...

 cs ::= SP ...

 comment ::= ; [graphic] ...

The use of the extsyntax form is allowed only within the contex t of an em bedded M program (see 6.4
Em bedded program s).

6.3 Routine execution

Routines are executed in a sequence of blocks. Each block is dynamically defined and is invoked by the
instance of an argumentless DO com mand, a doargument, an exfunc, or an exvar. Each b lock consists
of a set of lines that all have the same LEVEL; the block begins with the line reference implied by the
DO, exfunc, or exvar and ends with an implicit or explicit QUIT com mand. If no label is specified in the
doargument, exfunc, or exvar, the first line of the routinebody is used. The execution level is defined as
the LEVEL of the line currently being executed. Lines which have a LEVEL greater than the current
execution level are ignored, i.e., not executed. An implicit QUIT command is executed when a line with
a LEVEL less than the current execution level or the eor is encountered, thus terminating this block (see
8.2.16 for a description of the actions of QUIT). The initial LEVEL for a process is one. The
argumentless DO command increases the execution level by one. (See also the DO com mand and
GO TO com mand).

W ithin a given block execution proceeds sequentially from line to line in top to bottom order. W ithin a
line, execution begins at the leftm ost command and proceeds left to right from command to command.
Routine flow commands DO , ELSE, FOR, GO TO, IF, QUIT, TRESTART, XECUTE, exfunc and exvar
extrinsic functions and special variables, provide exception to this execution flow. (See also 6.3.2 Error

ANS I X11.1 Canvass Version 1 M Programming Language 9

Processing.) In general, each command's argument is evaluated in a left-to-right order, except as
explicitly noted elsewhere in this docum ent.

6.3.1 Transaction processing

A TRANSACTION is the execution of a sequence of commands that begins with a TSTART and ends
with either a TCOMM IT or a TROLLBACK, and that is not within the scope of any other TRANSACTION.
A TRANSACTION m ay be restartable, serializable, or both, depending on parameters specified in the
TSTART that initiates the TRANSACTION. (See 8.2.22 TSTART.) These properties affect execution of
the TRANSACTIO N as described below.

TSTART adds one to the intrinsic special v ariable $TLEVEL, which is init ialized to zero when a process
begins execution. TCOMM IT subtracts one from $TLEVEL if $TLEVEL is greater than zero.
TRO LLBACK sets $TLEVEL to zero. A process is within a TRANSACTION whenever its $TLEVEL value
is greater than zero. A process is not within a TRANSACTION whenever its $TLEVEL v alue is zero.

If, as a result of a TCOMMIT, $TLEVEL would become zero, an attempt is made to COMMIT the
TRANSACTION. A COMMIT causes the g lobal variable modif ications made with in the TRANSACTION
to becom e durable and accessible to other processes.

A ROLLBACK is performed if, within a TRANSACTION, either a TROLLBACK or a HALT command is
executed. A ROLLBACK rescinds all global variable modifications performed within the scope of the
TRANSACTION, remov es any nrefs from the LOCK-LIST that were not included in the LOCK-LIST when
the TRANSACTION started (i.e. when $TLEVEL changed from zero to one), and removes any RESTART
CONTEXT-STRUCTUREs for both the TRANSACTION linked list and the PROCESS-STACK linked list,
discarding the CONTEXT-STRUCTUREs. M errors do not cause an implicit ROLLBACK. (See the
LOCK command for definitions of nref and LOCK-LIST.)

Global variable modifications carried out by commands executed within a TRANSACTION are subject to
the following rules:

a) A process that is outside of a TRANSACTION cannot access the global variable modifications
made within a TRANSACTION until that TRANSACTION has been COMM ITted.

b) A process that is inside a TRANSACTION is not explicitly excluded from accessing
modifications made by other processes. However, a process cannot COMM IT a TRANSACTION
that has accessed the global v ariable m odifications of any other uncommitted TRANSACTION
before that other TRANSACTION has been comm itted.

c) If the transparameters with in the argument to the TSTART in itia ting the TRANSACTION
specifies serializability, then all global modifications perform ed by the TRANSACTION and all
other concurrently executing TRANSACTIONs must be equivalent to some serial, non-
overlapping execution of those TRANSACTIONs.

If it has been determined that a TRANSACTION in progress either cannot or is unlikely to conform to the
above-stated rules, then the TRANSACTION implicitly RESTARTs. In addition, the TRESTART
command explicit ly causes the TRANSACTION to RESTART.

The actions of a RESTART depend on whether it is restartable. A TRANSACTION is restartable if the
initiating TSTART specifies a restartargument. (See 8.2.22 TSTART.) A RESTART of a restartable
TRANSACTION causes execution to resum e with the initial TSTART. A RESTART of a non-restartable
TRANSACTION ends in an error (ecode="M27").

The following discussion uses terms defined in the Variable Handling (see 7.1.2.2) and Process-Stack
(see 7.1.2.3) models and, like those subclauses, does not imply a required implem entation technique.
Execution of a RESTART occurs as follows:

a) The frame at the top of the PROCESS-STACK is exam ined. If the frame's linked list of
CONTEXT-STRUCTUREs contains entries, they are processed in last-in-first-out order from their
creation. If the CONTEXT-STRUCTURE is exclusive, all entries in the currently active local
variable NAME-TABLE are pointed to empty DATA-CELLs. In all cases, the
CONTEXT-STRUCTURE NAME-TABLEs are copied to the currently active NAME-TABLEs. For
each RESTART CONTEXT-STRUCTURE, $TLEVEL is decremented by one until $TLEVEL
reaches 0 (zero) or the list is exhausted. If $TLEVEL does not reach 0 (zero), then:

1) if the f ram e contains form allist inform ation, it is processed as described by step d in
the description of the QUIT com mand (see 8.2.16).

10 M Programming Language ANSI X11.1 Canvass Version 1

2) the fram e is removed and step a repeats.

b) $TEST and the naked indicator are restored from the CONTEXT-STRUCTURE that triggered
$TLEVEL to reach 0 (zero).

c) A ROLLBACK is performed. If the TRANSACTION is not restartable, RESTART terminates
and an error condition occurs with ecode= "M27"

d) $TRESTART is incremented by 1. RESTART terminates and execution continues with the
initial TSTART, which includes re-evaluating postcond, if any, and tstartargument, if any.

6.3.2 Error processing

Error trapping provides a mechanism by which a process can execute specifiable comm ands in the event
that $ECODE becomes non-empty. The following facilities are provided:

The $ETRAP special variable may be set to either the empty string or to code to be invoked when
$ECODE becomes non-empty. Stacking of the contents of $ETRAP is performed via the NEW
command.

$ECO DE prov ides inform ation describ ing existing error conditions. $ECO DE is a comma-surrounded list
of conditions.

The $STACK function and $STACK v ariable prov ide stack related inform ation.

$ESTACK counts stack levels since $ESTACK was last NEW ed.

An Error Processing transfer of control consists of an implicit GOTO (without changing the
PROCESS-STACK) to the following two lines of code where x is the va lue of $ETRAP. These lines are
implicitly incorporated into the current execution environment imm ediately preceding the next comm and
in the normal execution sequence.

ls x eol
ls QUIT:$QUIT "" QUIT eol

For purposes of this transfer each command argument is considered to have its own com mandword (see
8.1 General com mand rules)

 An Error Processing transfer of control is performed when:

a) The value of $ECO DE changes from an em pty string to some other value as the result of an
error or a SET com mand.

b) $ECODE is not the empty string and a QUIT com mand remov es a PROCESS-STACK level at
which $STACK($STACK,"ECODE") would return a non-empty string, and, at the new
PRO CESS-STACK level, $STACK($STACK,"ECODE") would return an empty string (in other
words, when a QUIT takes the process from a fram e in which an error occurred to a fram e where
no error has occurred).

W hen $STACK($STACK,"ECO DE") returns a non-empty string and the value of $ECODE changes to a
non-empty string, the following actions are performed:

a) It associates the $STACK information about the failure as if it were associated with the frame
identified by $STACK+1.

b) It transfers control to the following line of code; this line is implicitly incorporated into the
current execution env ironm ent immediately preceding the next command in the normal
execution sequence:

ls TROLLBACK:$TLEVEL QUIT:$QUIT "" QUIT eol

6.4 Embedded programs

An embedded xxx M program is a program which consists of M text and text written to the specifications
of the xxx programm ing language or standard. Although it is not a routine, an embedded M program

ANS I X11.1 Canvass Version 1 M Programming Language 11

conforms to the syntax of a M routinebody.

 extsyntax ::= & extid (exttext)

 exttext ::= graphic ... [eol & ls graphic ...] ...

 extid ::= | SQL |

In exttext each eol & ls sequence is either ignored or, if required by the other programm ing language or
standard, replaced by one or more graphic characters. Exttext is then treated as if the graphic characters
following the ls were part of the prev ious line (a continuation line).

The exact syntax of the remainder of exttext is defined by the external programm ing language or
standard. In the case of extid being SQL this standard is X3.135 (see also Annex D).

Note: An embedded program im plies that one or more M routines may be created by some compilation
process, replacing any external syntax with appropriate M comm and lines, function calls etc. An
embedded program or embedded program pre-processor does not, therefore, need to adhere to the
portability requirements of Section 2 although the equivalent M routines and M im plementation should.

7. Expression expr

The expression, expr, is the syntactic element which denotes the execution of a value-producing
calculation. Expressions are made up of expression atoms separated by binary, string, arithmetic, or
truth-valued operators.

 expr ::= expratom [exprtail] ...

7.1 Expression atom expratom

 The expression atom, expratom, is the basic value-denoting object of which expressions are built.

 expratom ::= * glvn *
 * expritem *

7.1.1 Variables

The M standard uses the term s local variables and global variables somewhat dif ferently f rom their
connotation in certain other computer languages. This subclause provides a definition of these terms as
used in the M env ironm ent.

A M routine, or set of routines, runs in the context of an operating system process. During its execution,
the routine will create and modify variables that are restricted to its process. It can also access (or
create) variables that can be shared with other processes. These shared variables will normally be
stored on secondary peripheral dev ices such as disks. At the term ination of the process, the process-
specific v ariables cease to ex ist. The variables created for long term (shared) use remain on aux iliary
storage dev ices where they may be accessed by subsequent processes.

M uses the term local variable to denote variables that are created for use during a single process
activation. These variables are not av ailable to other processes. Howev er, they are generally av ailable
to all routines executed within the process's li fetime. M does include certain constructs, the NEW
command and parameter passing, which lim it the availability of certain variables to specific routines or
parts of routines.

A global variable is one that is created by a process, but is perm anent and shared. As soon as a process
creates, modifies or deletes a global variable outside of a TRANSACTION, other processes accessing
that global variable outside of a TRANSACTION receive its modified form. (See 6.3.1 Transaction
processing for a definition of TRANSACTION and information on how TRANSACTIONs affect global
modifications.) G lobal v ariables do not disappear when a process term inates. Like local v ariables,
global variables are available to al l routines executed within a process.

M has no explicit declaration or definition statements. Local and global variables, both non-subscripted
and subscripted, are automatically created as data is stored into them, and their data contents can be
referred to once information has been stored. Since the language has only one data type - string - there
is no need for type declarations or explicit data type conversions. Array structures can be
multidimensional with data simultaneously stored at all levels including the variable name level.

12 M Programming Language ANSI X11.1 Canvass Version 1

Subscripts can be positive, negative, or zero; they can be integer or noninteger numbers as well as
nonnum eric strings (other than em pty strings).

7.1.2 Variable name glvn

The metalanguage elem ent glvn is defined so as to be satisfied by the syntax of gvn, lvn, or ssvn.

 * lvn *
 glvn ::= * gvn *
 * ssvn *

7.1.2.1 Local variable name lvn

 lvn ::= * rlvn *
 * @ expratom V lvn *

 rlvn ::= * name [(L expr)] *
 * @ lnamind @ (L expr) *

 lnamind ::= rexpratom V lvn

 * rlvn *
 rexpratom ::= * rgvn *
 * expritem *

See 7.1.2.4 for the definition of rgvn. See 7.1.4 for the definition of expritem.
A local variable nam e is either unsubscripted or subscripted; if it is subscripted, any num ber of subscripts
separated by comm as is permitted. An unsubscripted occurrence of lvn may carry a different value from
any subscripted occurrence of lvn.

W hen lnamind is present it is always a component of an rlvn. If the value of the rlvn is a subscripted
form of lvn, then some of its subscripts may have originated in the lnamind. In this case, the subscripts
contributed by the lnamind appear as the first subscripts in the value of the resulting rlvn, separated by a
comma from the (non-empty) list of subscripts appearing in the rest of the rlvn.

7.1.2.2 Local variable handling

In general, the operation of the local variable symbol table can be viewed as follows. Prior to the initial
setting of information into a v ariable, the data value of that variable is said to be undefined. Data is
stored into a variable with commands such as SET, READ, or FOR. Subsequent references to that
variable return the data value that was most recently stored. W hen a variable is killed, as with the KILL
command, that variable and all of its array descendants (if any) are deleted, and their data values
become undefined.

No explicit syntax is needed for a routine or subroutine to hav e access to the local variables of its caller.
Except when the NEW command or parameter passing is being used, a subroutine or called routine (the
callee) has the same set of variable values as its caller and, upon completion of the called routine or
subroutine, the ca ller resumes execution with the sam e set of variable v alues as the callee had at its
completion.

The NEW command provides scoping of local variables. It causes the current values of a specified set
of variables to be saved. The variables are then set to undefined data values. Upon returning to the
caller of the current routine or subroutine, the saved values, including any undefined states, are restored
to those variables. Param eter passing, including the DO com mand, ex trinsic functions, and extrinsic
variables, allows parameters to be passed into a subroutine or routine without the callee being concerned
with the variable names used by the caller for the data being passed or returned.

The form al association of local variables with their values can best be described by a conceptual m odel.
This model is NOT m eant to imply an implementation technique for a M implem entation.

The value of a variable may be described by a relationship between two structures: the NAME-TABLE
and the VALUE-TABLE. (In reality, at least two such table sets are required, one pair per executing
process for process-specific local variables and one pair for system-wide global variables.) Since the
value association process is the same for both types of v ariables, and since issues of scoping due to
param eter passing or nested env ironm ents apply only to local v ariables, the discussion that follows will
address only loca l variable v alue association. It should be noted, however, that while the ov erall
structures of the table sets are the same, there are two m ajor differences in the way the sets are used.
First, the global v ariable tables are shared. This m eans that any operations on the global tables, e.g.,
SET or KILL, by one process, affect the tables for all processes. Second, since scoping issues of
parameter passing and the NEW command are not applicable to global variables, there is always a one-

ANS I X11.1 Canvass Version 1 M Programming Language 13

to-one relationship between entries in the global NAME-TABLE (variable names) and entries in the global
VALUE-TABLE (values).

The NAM E-TABLE consists of a set of entries, each of which contains a name and a pointer. This
pointer represents a correspondence between that name and exactly one DATA-CELL from the VALUE-
TABLE. The VALUE-TABLE consists of a set of DATA-CELLs, each of which contains zero or m ore
tuples of v arying degrees. The degree of a tuple is the num ber (possibly 0) of elements or subscripts in
the tuple list. Each tuple present in the DATA-CELL has an associated data value.

The NAM E-TABLE entries contain every non-subscripted variable or array name (name) known, or
accessible, by the process in the current environment. The VALUE-TABLE DATA-CELLs contain the set
of tuples that represent all variables currently having data-values for the process. Every name (entry) in
the NAME-TABLE refers (points) to exactly one DATA-CELL, and ev ery entry contains a unique nam e.
Several NAME-TABLE entr ies (names) can refer to the same DATA-CELL, howev er, and thus there is a
many-to-one relationship between (all) NAME-TABLE entries and DATA-CELLs. A name is said to be
bound to its corresponding DATA-CELL through the pointer in the NAME-TABLE entry. Thus the pointer
is used to represent the correspondence and the phrase change the pointer is the equivalent to saying
change the correspondence so that a name now corresponds to a possible different DATA-CELL (value).
NAME-TABLE entries are also placed in the PROCESS-STACK (see 7.1.2.3 Process-Stack).

The value of an unsubscripted lvn corresponds to the tuple of degree 0 found in the DATA-CELL that is
bound to the NAME-TABLE entry containing the name of the lvn. The value of a subscripted lvn (array
node) of degree n also corresponds to a tuple in the DATA-CELL that is bound to the NAME-TABLE entry
containing the name of the lvn. The specific tuple in that DATA-CELL is the tuple of degree n such that
each subscript of the lvn has the same value as the corresponding element of the tuple. If the
designated tuple doesn't exist in the DATA-CELL then the corresponding lvn is said to be undefined.

In the fo llowing figure, the v ariables and array nodes have the designated data values.

VAR1 = "Hello"
VAR2 = 12.34
VAR3 = "abc"
VAR3("Smith","John",1234)=123
VAR3("W idget","red") = -56

Also, the variable DEF existed at one time but no longer has any data or array value, and the variable
XYZ has been bound through param eter passing to the sam e data and array inform ation as the variable
VAR2.

NAME-TABLE VALUE-TABLE DATA-CELLS

+)))))))))),
VAR1----------> *()="Hello"*

.))))))))))-

+))))))))),
VAR2----------> *()=12.34 *
XYZ-----------> .)))))))))-

+)))))))))))))))))))))))))),
VAR3----------> *()="abc" *

*("Smith","John",1234)=123 *
*("Widget","red")=-56 *
.))))))))))))))))))))))))))-
+))))))))))))))))),

DEF-----------> * *
.)))))))))))))))))-

The initial state of a process prior to execution of any M code consists of an empty NAME-TABLE and
VALUE-TABLE. W hen information is to be stored (set, given, or assigned) into a variable (lvn):

a) If the name of the lvn does not already appear in an entry in the NAME-TABLE, an entry is
added to the NAME-TABLE which contains the name and a pointer to a new (empty) DATA-
CELL. The corresponding DATA-CELL is added to the VALUE-TABLE without any initial tuples.

b) Otherwise, the pointer in the NAME-TABLE entry which contained the name of the lvn is
extracted. The operations in steps c and d refer to tuples in that DATA-CELL referred to by this
pointer.

c) If the lvn is unsubscripted, then the tuple of degree 0 in the DATA-CELL has its data value

14 M Programming Language ANSI X11.1 Canvass Version 1

replaced by the new data value. If that tuple did not already exist, it is created with the new data
value.

d) If the lvn is subscripted, then the tuple of subscripts in the DATA-CELL (i.e., the tuple created
by dropping the name of the lvn; the degree of the tuple equals the num ber of subscripts) has its
data value replaced by the new data v alue. If that tuple did not already exist, it is created with
the new data value.

W hen information is to be retrieved, if the name of the lvn is not found in the NAME-TABLE, or if its
corresponding DATA-CELL tuple does not exist, then the data value is said to be undefined. Otherwise,
the data value exists and is retrieved. A data value of the empty string (a string of zero length) is not the
same as an undefined data value.

W hen a v ariable is deleted (k illed):

a) If the name of the lvn is not found in the NAME-TABLE, no further action is taken.

b) If the lvn is unsubscripted, all of the tuples in the corresponding DATA-CELL are deleted.

c) If the lvn is subscripted, let N be the degree of the subscript tuple formed by removing the
name from the lvn. All tuples that satisfy the following two conditions are deleted from the
corresponding DATA-CELL:

1) The degree of the tuple must be greater than or equal to N, and

2) The f irst N arguments of the tuple must equal the corresponding subscripts of the lvn.

In this formal language model, even if all of the tuples in a DATA-CELL are deleted, neither the DATA-
CELL nor the corresponding names in the NAME-TABLE are ever deleted. Their continued ex istence is
frequently required as a result of parameter passing and the NEW command.

7.1.2.3 Process-Stack

The PROCESS-STACK is a virtual last-in-first-out (LIFO) list (a simple push-down stack) used to
describe the behav ior of M. It is used as an aid in describing how M appears to work and does not im ply
that an implem entation is required to use such a stack to achieve the specified behavior. Three types of
items, or frames, will be placed on the PROCESS-STACK, DO fram es (including XECUTEs), extrinsic
frames (including exfunc and exvar) and error fram es (for errors that occur during error processing):

a) DO frames contain the execution level and the execution location of the doargument or
xargument. In the case of the argumentless DO, the execution level, the execution location of
the DO com mand and a saved value of $TEST are saved. The execution location of a process is
a descriptor of the location of the comm and and possible argument currently being executed.
This descriptor includes, at minimum, the routinename and the character position following the
current com mand or argum ent.

b) Extrinsic frames contain saved v alues of $TEST, the execution level, and the execution
location.

c) Error fram es contain information about error conditions during error processing (see 6.3.2
Error processing).

The term CO NTEXT-STRUCTURE is used to refer to a set of information related to the maintenance of
the process context.

7.1.2.4 Global variable name gvn

 * rgvn *
 gvn ::= * *
 * @ expratom V gvn *

 * ^(L expr) *
 rgvn ::= * ^ [| environment |] name [(L expr)] *
 * @ gnamind @ (L expr) *

 gnamind ::= rexpratom V gvn

 environment ::= expr

ANS I X11.1 Canvass Version 1 M Programming Language 15

The prefix ^ uniquely denotes a global variable name. A global variable name is either unsubscripted or
subscripted; if i t is subscripted, any number of subscripts separated by comm as is permitted. An
abbreviated form of subscripted gvn is permitted, called the naked reference, in which the pref ix is
present but the environment, name and an initial (possibly empty) sequence of subscripts is absent but
implied by the value of the naked indicator. An unsubscripted occurrence of gvn may carry a d ifferent
value from any subscripted occurrence of gvn.

W hen environment is present it identifies a specific set of all possible names.

W hen gnamind is present it is always a component of an rgvn. If the value of the rgvn is a subscripted
form of gvn, then some of its subscripts may have originated in the gnamind. In this case, the subscripts
contributed by the gnamind appear as the first subscripts in the value of the resulting rgvn, separated by
a comma from the (non-empty) list of subscripts appearing in the rest of the rgvn.

Every executed occurrence of gvn affects the naked indicator as fo llows. If, for any positive in teger m,
the gvn has the nonnaked form

 N(v1 , v2 , ... , vm)

then the m-tuple N, v1 , v2 , ... , vm!1 , is placed into the naked indicator when the gvn reference is made.
A subsequent naked reference of the form

 ^(s1 , s2 , ... , s i) (i positive)

results in a global reference of the form

 N(v1 , v2 , ... , vm!1 , s1 , s2 , ... , s i)

after which the m+i!1-tuple N , v1 , v2 , ... , s i!1 is placed into the naked ind icator. Prior to the f irst
executed occurrence of a nonnaked form of gvn, the value of the naked indicator is undef ined. A
nonnaked reference without subscripts or a ROLLBACK, or a change of the default global environment
leaves the naked indicator undefined. When a gvn is encountered in the form of a naked reference and
the naked indicator is undefined, an error condition occurs with ecode="M1".

The effect on the naked indicator described above occurs regardless of the context in which gvn is
found; in part icular, an assignment of a value to a global variable with the comm and SET gvn = expr
does not affect the value of the naked indicator until after the right-side expr has been evaluated. The
effect on the naked indicator of any gvn within the right-side expr will precede the effect on the naked
indicator of the left-side gvn.

7.1.3 Structured system variable ssvn

Structured system v ariables are denoted by the prefix ^$ followed by one of a designated list of names,
followed by a parenthesized list of exprs. These exprs will be called subscripts. Structured system
variable nam es differing only in the use of corresponding upper and lower case letters are equiv alent.

The formal definition of ssvn is a choice from among all of the indiv idual ssvn definitions below:

 * syntax of ^$CHARACTER structured system variable T
 * syntax of ^$DEVICE structured system variable *
 * syntax of ^$GLOBAL structured system variable *
ssvn ::= * syntax of ^$JOB structured system variable *
 * syntax of ^$LOCK structured system variable *
 * syntax of ^$ROUTINE structured system variable *
 * syntax of ^$SYSTEM structured system variable *
 * syntax of ^$Z[unspecified] structured system variable *
 R R
Values may not be assigned to ssvns and ssvns may not be KILLed unless the semantics of these
operations are explicitly defined.

The following structured system variables are specified.

7.1.3.1 ^$CHARACTER

^$C[HARACTER] (charsetexpr)

charsetexpr ::= expr V charset

16 M Programming Language ANSI X11.1 Canvass Version 1

^$CHARACTER provides information regarding the available Character Set Profiles on a system, such
as collation order and pattern code def initions.

W hen and only when a Character Set Profile identified by charset exist, ^$CHARACTER(charset) has a
value; all nonempty string values are reserved for future extension of the standard.

Data manipulation and the execution of comm ands within a process are performed in the context of the
process charset. (See 7.1.3.4 ^$JOB)

Input-Transformation:

^$CHARACTER(charsetexpr1 , expr V "INPUT" , charsetexpr2) = expr V algoref

* emptystring *
* $$ labelref *

algoref ::= * $& externref *
* $ functionname *

emptystring ::= a string of zero length.

This node specif ies the input-transform ation algorithm which is performed on a string in the process
Character Set Profile charset1 when it is retriev ed f rom a global or routine which uses charset2 or
transmitted from a dev ice using charset2. The algoref specifies the algorithm by which this translation is
accomplished, if no input-transformation algorithm is defined, an empty-string value is used. The
conversion of the string old to the string new using the input-transformation algorithm transform may be
evaluated by executing: ("S new="_ transform_"(old)").

Output-Transformation:

^$CHARACTER(charsetexpr1 , expr V "OUTPUT" , charsetexpr2) = expr V algoref

This node specif ies the output-transformation algorithm which is performed on a string in the process
Character Set Profile charset1 when it is stored in a global or rout ine which uses charset2 or transmitted
to a device using charset2. The algoref specifies the algorithm by which this translation is accomplished,
if no output-transformation algorithm is defined, an empty-string value is used. The conversion of the
string old to the string new using the output-transformation algorithm transform may be evaluated by
executing: ("S new="_ transform_"(old)").

Valid name characters:

^$CHARACTER(charsetexpr , expr V "IDENT") = expr V algoref

This node specifies the identification algorithm used to determine which characters in a charset are valid
for use in names (i.e. is a character in the set ident).

The ident truth-value truth , of a character char using an identification algorithm ident, may be evaluated
by executing the expression: ("S truth="_ ident_"($ASCII(char))"). W hen truth is "true", char is an ident;
when truth is "false", char is not an ident. Note that for $ASCII(char) values less than 128, 65-90 and
97-122 are required to be "true" and all other values less than 128 are required to be "false". If the
identification algorithm node is undefined, or is the em pty string, then it will return "false" for all
$ASCII(char) greater than 127; values less than 128 will be returned as indicated.

patcode definition:

 ^$CHARACTER(charsetexpr , expr V "PATCODE" , expr V patcode) = expr V algoref

This node identifies the pattern testing algorithm that determines which characters of charset match the
specified patcode; if this node is not defined, or is the empty string, then no characters in the charset will
match that patcode. The patcode truth-value truth of a character char using a nonempty-string pattern
testing algorithm pattest may be evaluated by executing the expression:
("S truth="_pattest_"($ASCII(char))"). W hen truth is "true", char belongs to the specified patcode; when
truth is "false", char does not belong to that patcode.

Collation Algorithm:
 ^$CHARACTER(charsetexpr , expr V "COLLATE") = expr V algoref

This node identifies the collation algorithm for the specif ied Character Set Prof ile (charset).

ANS I X11.1 Canvass Version 1 M Programming Language 17

7.1.3.2 ^$DEVICE

^$D[EVICE] (devicexpr)

devicexpr ::= expr V device

device ::= devicespecifier; an implementation specific device identifier.

^$DEVICE prov ides information about the existence, operational characteristics and availability of
dev ices.

Note: The holding of inform ation about a dev ice when it is not open m ay be transitory. There are also
likely to be more dev ices in a system which could be opened by a M process than will have information
stored in ^$DEVICE.

Dev ice characteristic information for a device is stored beneath the ^$DEVICE(devicexpr) node:

^$DEVICE(devicexpr , expr V "CHARACTER") = charsetexpr

This node identifies the current Character Set Prof ile of the specified dev ice. The Character Set Profile
is assigned to the dev ice in an im plem entation-specific m anner.

^$DEVICE (devicexpr , expr V dev iceattribute)

This contains the primary value or v alues associated with this dev iceattribute. Additional values may be
stored in descendants of this node.

W hen a dev ice is opened then values for the dev iceattributes are created in ^$DEVICE. These may be
retained after the device is closed. The range of dev iceattribute nam es and the format of the v alues is
defined by the mnemonicspace in use for the device.

7.1.3.3 ^$GLOBAL

^$G[LOBAL] (gvnexpr)

gvnexpr ::= expr V gvn

^$GLOBAL prov ides inform ation about the existence and characteristics of g lobals.

W hen and only when a global identified by gvnexpr exists, ^$GLOBAL(gvnexpr) has a value; all
nonem pty string values are reserved for future extension of the standard. Global characteristic
information is stored beneath the ^$GLOBAL(gvnexpr) node:

^$GLOBAL(gvnexpr , expr V "CHARACTER") = charsetexpr

This node identifies the Character Set Profile of the specified global. W hen the f irst node in a global is
created, and the node ^$GLOBAL(gvnexpr,"CHARACTER") has a $DATA value of zero, the value
assigned is that of ^$JOB($JOB,"CHARACTER"). The result of killing a gvn does not alter the
characteristics stored in ^$GLOBAL for that gvn.

Collation Algorithm:

^$GLOBAL(gvnexpr , expr V "COLLATE") = expr V algoref

This node identifies the collation algorithm to be used when collation is required for a reference to this
global. The collation value order for a subscript-string subscript, and a collation algorithm collate may be
determined by executing the expression: ("S order="_collate_"(subscript)"). In all cases a collation
algorithm must return a distinct order for each distinct subscript.

W hen the f irst node of a global global is created, and the collation algorithm node
^$GLOBAL("global","COLLATE") has a $DATA v alue of zero, then the value of the current process'
Character Set Profile collation algorithm
($G ET(^$CHARACTER(^$JOB($JOB,"CHARACTER"),"CO LLATE"))) is assigned as the global's
collation algorithm (^$GLO BAL("global","COLLATE")).

7.1.3.4 ^$JOB

^$J[OB] (processid)

18 M Programming Language ANSI X11.1 Canvass Version 1

processid ::= expr V jobnumber

^$JOB prov ides information about the existence and characteristics of processes in a system.

W hen and only when a process identified by processid exists, ^$JOB(processid) has a value; all
nonem pty string values are reserved for future enhancem ent of the standard. Process characteristics are
stored beneath the ^$JOB(processid) node:

^$JOB(processid , expr V "CHARACTER") = charsetexpr

This node identifies the active Character Set Profile in use by the process indicated by processid. Unless
otherwise modified via the processparam eters of the JOB com mand, when a process is created
^$JOB($JOB,"CHARACTER") is set to the charset of the process that created it.

7.1.3.5 ^$LOCK

^$L[OCK] (expr V nref)
will provide information on the existence and operational characteristics of locked names.

7.1.3.6 ^$ROUTINE

^$R[OUTINE] (routinexpr)

routinexpr ::= expr V routinename

^$ROUTINE prov ides inform ation about the existence and characteristics of routines.

W hen and only when a routine identified by routinexpr exists, ^$ROUTINE(routinexpr) has a value; all
nonem pty string values are reserved for future enhancem ent of the standard. Process characteristics are
stored beneath the ^$ROUTINE(routinexpr) node:

^$ROUTINE(routinexpr , expr V "CHARACTER") = charsetexpr

This node identifies the Character Set Profile in which routine routinexpr is stored.

W hen a routine is created and ^$ROUTINE(routinexpr,"CHARACTER") for that routine has a $DATA
value of zero, then this node is assigned the current v alue of the node ^$JOB($JOB,"CHARACTER").

7.1.3.7 ^$SYSTEM

^$S[YSTEM] (systemexpr)

systemexpr ::= expr V system

system ::= syntax of $SYSTEM intrinsic special variable

^$SYSTEM prov ides inform ation about the characteristics of systems. A system represents the dom ain
of concurrent processes for which $JOB is unique; the current system is identified by the svn $SYSTEM.
The second lev el subscripts of ^$SYSTEM not beginning with the letter "Z" are reserved for future
enhancement of the standard.

System Character Set Profile:

^$SYSTEM(systemexpr , expr V "CHARACTER") = charsetexpr

This node specifies the charset which the specified system uses for interpretation of all system-wide
name values, such as global names, routine names, environment names, and all subscripts of ssvns.

7.1.3.8 ^$Z[unspecified]

^$Z[unspecified] (unspecified)
will prov ide im plem entation-specific information. Z is the initial letter for defining non-standard
structured system variables. The requirem ent that ^$Z be used perm its the unused initial letters
to be reserved for future enhancement of the standard without altering the execution of existing
programs which observe the rules of the standard.

7.1.3.9 ssvns specifying default environments

The following ssvns, specifying default environments, are defined. This clause pertains to the following

ANS I X11.1 Canvass Version 1 M Programming Language 19

three ssvns:

^$JOB(processid,"GLOBAL") default global environment
^$JOB(processid,"LOCK") default lock environment
^$JOB(processid,"ROUTINE") default routine environment

A process may always obtain and assign a value to these nodes, where processid = $JOB. However, for
technical reasons or security concerns, implementations may restrict access to these nodes for
processids other than the current processid. An attempt to violate this restriction causes an error
condition with an implem entor-specified ecode beginning with "Z".

W hen a process starts, the values of these ssvns are, in general, def ined by the implem entation.
However, a process initiated by a JOB command begins with the routine environment specified in the
JOB com mand, if any. If the com mand did not specify one, then the initiated process inherits the default
routine environment of the in itiat ing process.

Explicit qualification of a labelref, routineref, gvn, or nref with an environment overrides the default
environment for that one reference.

Assigning a non-ex istent environment to one of these ssvns is not in itself erroneous. However, an
attem pt to refer to a routine, global, or lock in the non-ex istent environment causes an error condition
with an ecode = "M26".

7.1.4 Expression item expritem

 * strlit *
 * numlit *
 * exfunc *
 * exvar *
 expritem ::= * svn *
 * function *
 * unaryop expratom *
 * (expr) *

7.1.4.1 String literal strlit

 +)),
 * "" *
 strlit ::= " * * ... "
 * nonquote *
 .))-

 nonquote ::= any of the characters in graphic except the quote character.

In words, a string literal is bounded by quotes and contains any string of printable characters, except that
when quotes occur inside the string literal, they occur in adjacent pairs. Each such adjacent quote pair
denotes a single quote in the value denoted by strlit, whereas any other printable character between the
bounding quotes denotes itself. An em pty string is denoted by exact ly two quotes.

7.1.4.2 Numeric literal numlit

The integer literal syntax , intlit, which is a nonempty string of digits, is defined here.

 intlit ::= digit ...

The num eric literal num lit is def ined as follows.

 numlit ::= mant [exp]

 mant ::= * intlit [. intlit] *
 * . intlit *

 +)),
 exp ::= E * + * intlit
 * - *
 .))-

The value of the string denoted by an occurrence of num lit is def ined in the following two subclauses.

7.1.4.3 Numeric data values

20 M Programming Language ANSI X11.1 Canvass Version 1

All variables, local, global, and special, have values which are either defined or undefined. If defined,
the values m ay always be thought of and operated upon as strings. The set of numeric values is a
subset of the set of all data values.

Only num bers which may be represented with a finite number of decimal digits are representable as
num eric values. A data value has the form of a num ber i f it satisfies the fol lowing restrict ions.

a) It shall contain only digi ts and the characters "!" and ".".

b) At least one dig it must be present.

c) "." occurs at most once.

d) The number zero is represented by the one-character string "0".

e) The representation of each positive number contains no "!".

f) The representation of each negative num ber contains the character "!" followed by the
representation of the positive num ber which is the absolute value of the negativ e num ber.
(Thus, the following restrictions describe positive num bers only.)

g) The representation of each positive integer contains only digits and no leading zero.

h) The representation of each positive number less than 1 consists of a "." followed by a
nonempty digit string with no trailing zero. (This is called a fraction.)

i) The representation of each positive non-integer greater than 1 consists of the representation
of a positive integer (called the integer part of the number) followed by a fraction (called the
fraction part of the number).

Note that the mapping between representable numbers and representations is one-to-one. An important
result of this is that string equality of num eric values is a necessary and sufficient condition of num eric
equality.

7.1.4.4 Meaning of numlit

Note that num lit denotes only nonnegative v alues. The process of converting the spelling of an
occurrence of num lit into its numeric data value consists of the fo llowing steps.

a) If the mant has no ".", place one at its right end.

b) If the exp is absent, skip step c.

c) If the exp has a plus or has no sign, move the "." a number of decimal digit positions to the
right in the mant equal to the value of the intlit of exp, appending zeros to the right of the mant
as necessary. If the exp has a m inus sign, move the "." a num ber of decimal digit positions to
the left in the mant equal to the value of the intlit of exp, appending zeros to the left of the mant
as necessary.

d) Delete the exp and any leading or trailing zeros of the mant.

e) If the rightm ost character is ".", remove it.

f) If the result is em pty, make it "0".

7.1.4.5 Numeric interpretation of data

Certain operations, such as arithmetic, deal with the numeric interpretations of their operands. The
num eric interpretation is a m apping from the set of all data values into the set of all num eric values,
described by the following algorithm . Note that the numeric interpretation m aps num eric values into
themselv es.

(Note: The head of a string is defined to be a substring which contains an identical sequence of
characters in the string to the left of a given point and none of the characters in the string to the right of
that point. A head m ay be em pty or it may be the entire string.)

Consider the argument to be the string S.

First, apply the following sign reduction rules to S as many tim es as possible, in any order.

ANS I X11.1 Canvass Version 1 M Programming Language 21

a) If S is of the form + T, then remove the +. (Shorthand: + T Y T)

 b) ! + T Y ! T

c) !! T Y T

Second, apply one of the following, as appropriate.

a) If the leftmost character of S is not "!", form the longest head of S which satisfies the syntax
description of num lit. Then apply the algorithm of 7.1.4.4 to the result.

b) If S is of the form ! T, apply step a) above to T and append a "!" to the left of the result. If
the result is "!0", change it to "0".

The numeric expression numexpr is def ined to have the sam e syntax as expr. Its presence in a syntax
description serves to indicate that the num eric interpretation of its value is to be taken when it is
executed.

 numexpr ::= expr

7.1.4.6 Integer interpretation

Certain functions deal with the integer interpretations of their argum ents. The integer interpretation is a
mapping from the set of all data values onto the set of all integer values, described by the following
algorithm.

First, take the numeric interpretation of the argum ent. Then remove the fraction, if present. If the result
is empty or "!", change it to "0".

The integer expression intexpr is def ined to have the sam e syntax as expr. Its presence in a syntax
definition serves to indicate that the integer interpretation of its value is to be taken when it is executed.

 intexpr ::= expr

7.1.4.7 Truth-value interpretation

The truth-v alue interpretation is a m apping from the set of all data values onto the two integer v alues 0
(false) and 1 (true), described by the following algorithm. Take the num eric interpretation. If the result is
not "0", make it "1".

The truth-value expression tvexpr is def ined to have the sam e syntax as expr. Its presence in a syntax
definition serves to indicate that the truth-v alue interpretation of its value is to be taken when it is
executed.

 tvexpr :: = expr

7.1.4.8 Extrinsic function exfunc

 T $ labelref T
 exfunc ::= $ * * actuallist
 * externref *

Extrinsic functions invoke a subroutine to return a value. W hen an extrinsic function is executed, the
current value of $TEST, the current execution level, and the current execution location are saved in an
exfunc frame on the PRO CESS-STACK. The actual list param eters are then processed as described in
8.1.7.

Execution continues either in the specified externref or at the first command of the formalline specified
by the labelref. This formalline must contain a formallist in which the number of names is greater than or
equal to the number of names in the actual list, otherwise an error occurs with ecode = "M58". Execution
of an exfunc to a levelline causes an error condition with ecode="M20".

Upon return from the subroutine the value of $TEST and the execution level are restored, and the value
of the argument of the QUIT com mand that terminated the subroutine is returned as the value of the
exfunc.

7.1.4.9 Extrinsic special variable exvar

 * $ labelref *
 exvar ::= $ * *

22 M Programming Language ANSI X11.1 Canvass Version 1

 * externref *

An extrinsic special variable whose labelref is x is identical to the extrinsic function:

$$x()

Note that label x must have a (possibly em pty) formallist.

7.1.4.10 Intrinsic special variable names svn

Intrinsic special variables are denoted by the prefix $ followed by one of a designated list of names.
Intrinsic special variable nam es differing only in the use of corresponding upper and lower case letters
are equivalent. The standard contains the fo llowing intrinsic special v ariable nam es:

D[EVICE]
EC[ODE]
ES[TACK]
ET[RAP]
H[OROLOG]
I[O]
J[OB]
K[EY]
P[RINCIPAL]
Q[UIT]
ST[ACK]
S[TORAGE]
SY[STEM]
T[EST]
TL[EVEL]
TR[ESTART]
X
Y
Z[unspecified]

Unused intrinsic special variable names beginning with an initial letter other than Z are reserved for
future enhancement of the standard.

The formal definition of the syntax of svn is a choice from among all of the indiv idual svn syntax
definitions of this subclause.

 * syntax of $DEVICE intrinsic special variable *
 * syntax of $IO intrinsic special variable *
 svn ::= * . *
 * . *
 * . *
 * syntax of $Y intrinsic special variable *
 * syntax of $Z[unspecified] intrinsic special variable *

Any implementation of the language must be able to recognize both the abbreviation and the full spelling
of each intrinsic special variable name.

Syntax Definition

$D[EVICE] $DEVICE reflects the status of the current device. If the status of the device
does not reflect any error-condition, the value of $DEVICE, when interpreted as
a truth-value, will be 0 (fa lse). If the status of the dev ice would ref lect any error-
condition, the value of $DEVICE, when interpreted as a truth-value, will be 1
(true).

$DEVICE will give status code and meaning in one access. Its value is one of

* M *
* M,I *
* M,I,T *
R R

where M is an MDC def ined value , I is an implem entor def ined value and T is
explanatory tex t.

The value of M, when interpreted as a truth value, will be equal to 0 (zero) when
no signif icant change of status is being reported. Any nonzero v alue ind icates a
significant change of status.

ANS I X11.1 Canvass Version 1 M Programming Language 23

The value of I is an implementation-specif ic v alue for the relevant status-
information.

The value of T is implem entation specific.

Note: Since M, I, and T are separated by commas, the values of M and I cannot
contain this character.

$EC[ODE] contains information about an error condition. This information is loaded by the
implem entation af ter detecting an erroneous condition, or by the application v ia
the SET com mand. W hen the value of $ECODE is the empty string, normal
routine execution rules are in effect. W hen $ECODE contains anything else, the
execution rules in 6.3.2 (Error processing) are active. W hen a process is
initiated, but before any comm ands are processed, the value of $ECO DE is the
empty string.

The syntax of a non-em pty value returned by $ECO DE is as follows:

, L ecode ,

 T M T
ecode ::=* U * [noncomma ...]
 * Z *

noncomma ::= any of the characters in graphic except the
comma character.

Note: ecodes beginning with:
M are reserved for the MDC
U are reserved for the user
Z are reserved for the implementation

All other values are reserved.

$ES[TACK] counts stack levels in the same way as $STACK, however, a NEW $ESTACK
saves the value of $ESTACK and then assigns $ESTACK the value of 0. W hen
a process is initiated, but before any comm ands are processed, the value of
$ESTACK is 0 (zero).

$ET[RAP] contains code which is invoked in the event an error condition occurs. See 6.3.2-
Error processing. W hen a process is initiated, but before any com mands are
processed, the value of $ETRAP is the empty string.

The value of $ETRAP may be stacked with the NEW comm and; NEW $ETRAP
has the effect of saving the current instantiation of $ETRAP and creating a new
instantiation initialized with the same value.

The value of $ETRAP is changed with the SET com mand. Changing the value of
$ETRAP with a SET com mand instantiates a new trap; it does not save the old
trap.

A QUIT from $ETRAP, either explicit or implicit (i.e., SET $ETRAP="DO
^ETRAP" has an implicit QUIT at its end with an empty argument, if appropriate)
will function as if a QUIT had been issued at the "current" $STACK. Behav ior at
the "popped" level will be determ ined by the value of $ECODE. If $ECODE is
empty, execution proceeds normally. Otherwise, $ETRAP is invoked at the new
level.

$H[OROLOG] $HORO LOG giv es date and tim e with one access. Its value is D , S where D is
an integer value counting days since an origin specified below, and S is an
integer value m odulo 86,400 counting seconds. The value of $HOROLOG for
the first second of December 31, 1840 is defined to be 0,0. S increases by 1
each second and S clears to 0 with a carry into D on the tick of m idnight.

$I[O] $IO identifies the current I/O dev ice (see 8.2.2 and 8.2.23).

$J[OB] Each executing process has its own job number, a positive integer which is the
value of $JOB. The job num ber of each process is unique to that process within
a domain of concurrent processes defined by the implementor. $JOB is constant
throughout the activ e life of a process.

24 M Programming Language ANSI X11.1 Canvass Version 1

$K[EY] $KEY contains the control-sequence which term inated the last READ command
from the current dev ice (including any introducing and terminating characters).
If no READ com mand was issued to the current device or when no terminator
was used, the value of $KEY will be the empty string. The effect of a READ
*glvn on $KEY is unspecified.

If a Character Set Prof ile input-transform is in effect, then this is also applied to
the value stored in $KEY.

See (READ com mand) and (W RITE com mand).

$P[RINCIPAL] $PRINCIPAL identifies the principal I/O dev ice.

The principal I/O device is the device that is the current device at the moment
when a process is started, so that the value of $PRINCIPAL will be equal to the
in itia l va lue of $IO.

(See CLOSE and USE com mands).

$Q[UIT] $QUIT returns 1 if the current PROCESS-STACK frame was invoked by an
exfunc or exvar, and therefore a QUIT would require an argument. Otherwise,
$QUIT returns 0 (zero). W hen a process is initiated, but before any comm ands
are processed, the v alue of $QUIT is 0 (zero).

$ST[ACK] $STACK gives the current level of the PROCESS-STACK. $STACK contains an
integer value of zero or greater. W hen a process is initiated, but before any
com mands are processed, the value of $STACK is 0 (zero). See 7.1.2.3
(process-stack) for a description of stack behav ior.

$S[TORAGE] Each implementation must return for the value of $STORAGE an integer which
is the number of characters of free space available for use. The method of
arriving at the value of $STO RAG E is not part of the standard.

$SY[STEM] Each implem entation m ust return a value in $SYSTEM which represents
uniquely the system representing the domain of concurrent processes for which
$JO B is unique. Its value is V,S where V is an integer value allocated by the
MDC to an implementor and S is defined by that implem entor in such a way as
to be able to be unique for al l the implementor's systems.

$T[EST] $TEST contains the truth value computed from the execution of an IF com mand
containing an argument, or an OPEN, LOCK, JOB, or READ command with a
timeout (see 7.1.4.8, 7.1.4.9, and 8.2.3).

$TL[EVEL] $TLEVEL indicates whether a TRANSACTION is currently in progress. It is
initialized to zero when a process begins. TSTART adds 1 to $TLEVEL. W hen
$TLEVEL is greater than zero, TCOMM IT subtracts 1 from $TLEVEL. A
ROLLBACK or RESTART sets $TLEVEL to zero.

$TR[ESTART] $TRESTART indicates how many RESTARTs have occurred since the initiation
of a TRANSACTION. It is initialized to zero when a process begins, and set to
zero by the successful completion of TCOM MIT or TRO LLBACK. Each
RESTART adds 1 to $TRESTART.

$X $X has a nonnegative integer value which approximates the value of the
horizontal co-ordinate of the active position on the current device. It is initialized
to zero by any control-function or format that involves a mov e to the start of a
line.
The unit in which $X is expressed is initially equal to 'characters'. Certain
formats may change th is.

W hen any control-function would leave the cursor in a position so that the
horizontal co-ordinate would be uncertain, the value of $X will not be changed.
In such cases the value of $DEVICE will be an error-code.

If a Character Set Prof ile input-transform is in effect, then $X is modified in
accordance with the input prior to any transform taking place. If a Character Set
Profile output-transform is in effect, then $X is modified in accordance with the
output after any transform takes place.

ANS I X11.1 Canvass Version 1 M Programming Language 25

See 8.2.17 (READ comm and) 8.2.23 (USE comm and) and 8.2.25 (W RITE
com mand).

$Y $Y has a nonnegative integer value which approximates the value of the vertical
co-ordinate of the active position on the current device. It is initialized to zero by
any control-function or format that involves a move to the start of a page.

The unit in which $Y is expressed is initially equal to 'lines'. Certain formats may
change this.

W hen any control-function would leave the cursor in a position so that the
vertical co-ordinate would be uncertain, the value of $Y will not be changed. In
such cases, the value of $DEVICE will be an error-code.

If a Character Set Prof ile input-transform is in effect, then $Y is m odified in
accordance with the input prior to any transform taking place. If a Character Set
Profile output-transform is in effect, then $Y is modified in accordance with the
output after any transform takes place.

See 8.2.17 (READ comm and) 8.2.23 (USE comm and) and 8.2.25 (W RITE
com mand).

$Z[unspecified] Z is the initial letter reserved for defining non-standard intrinsic special variables.
The requirement that $Z be used permits the unused initial letters to be reserved
for future enhancement of the standard without altering the execution of existing
routines which observe the rules of the standard.

7.1.4.11 Unary operator unaryop

 * ' * (Note: apostrophe)
 unaryop ::= * + *
 * - * (Note: hyphen)

There are three unary operators: ' (not), + (plus), and ! (minus).

Not inverts the truth value of the expratom imm ediately to its right. The value of 'expratom is 1 if the
truth-value interpretation of expratom is 0; otherwise its value is 0. Note that '' performs the truth-value
interpretation.

Plus is merely an explicit means of taking a numeric interpretation. The value of +expratom is the
numeric interpretation of the value of expratom.

Minus negates the numeric interpretation of expratom. The value of !expratom is the numeric
interpretation of !N, where N is the value of expratom.

Note that the order of application of unary operators is right-to-left.

7.1.4.12 Name value namevalue

 namevalue ::= expr

A namevalue has the syntax of a glvn with the following restric tions:

a) The glvn is not a naked reference.

b) Each subscript whose value has the form of a num ber as def ined in 7.1.4.3 appears as a
num lit, spelled as its numeric interpretation.

c) Each subscript whose value does not have the form of a num ber as defined in 7.1.4.3
appears as a sublit, def ined as follows:

 sublit ::= " * "" * "
 * subnonquote *...

where subnonquote is def ined as follows:

 subnonquote ::= any character valid in a subscript, excluding the quote
 symbol.

d) The environment appears as def ined in b. and c. for subscripts.

26 M Programming Language ANSI X11.1 Canvass Version 1

7.1.5 Intrinsic function function

Intrinsic functions are denoted by the prefix $ followed by one of a designated list of names, followed by
a parenthesized argument list. Intrinsic function names differing only in the use of corresponding upper
and lower case letters are equivalent. The following function names are defined:

 T A[SCII] *
 * C[HAR] *
 * D[ATA] *
 * E[XTRACT] *
 * F[IND] *
 * FN[UMBER] *
 * G[ET] *
 * J[USTIFY] *
 * L[ENGTH] *
 * NA[ME] *
functionname ::= * O[RDER] *
 * P[IECE] *
 * QL[ENGTH] *
 * QS[UBSCRIPT] *
 * Q[UERY] *
 * R[ANDOM] *
 * RE[VERSE] *
 * S[ELECT] *
 * ST[ACK] *
 * T[EXT] *
 * TR[ANSLATE] *
 * V[IEW] *
 * Z[unspecified] *

Unused function names beginning with an initial letter other than Z are reserved for future enhancement
of the standard.

The formal definition of the syntax of function is a choice from among all of the indiv idual function syntax
definitions in this subclause.

 * syntax of $ASCII function *
 * syntax of $CHAR function *
 * . *
 function ::= * . *
 * . *
 * syntax of $VIEW function *
 * syntax of $Z[unspecified] function *

Any implementation of the language must be able to recognize both the abbreviation and the full spelling
of each function name.

7.1.5.1 $ASCII

$A[SCII] (expr)

This form produces an in teger v alue as follows:

a) !1 if the value of expr is the empty string.
b) Otherwise, an integer n associated with the leftmost character of the value of expr, such that
$ASCII($CHAR(n)) = n.

$A[SCII] (expr , intexpr)

This form is similar to $ASCII(expr) except that it works with the intexprth character of expr instead of
the first. Form ally, $ASCII(expr,intexpr) is defined to be $ASCII($EXTRACT(expr,intexpr)).

7.1.5.2 $CHAR

$C[HAR] (L intexpr)

This form returns a string whose length is the num ber of argument expressions which hav e nonnegative
values. Each intexpr in the closed interval [0,127] maps into the ASCII character whose code is the
value of intexpr; this mapping is order-preserving. Each negative-valued intexpr maps into no character
in the value of $CHAR. Each intexpr greater than 127 maps into a character in a manner defined by the

ANS I X11.1 Canvass Version 1 M Programming Language 27

current charset of the process.

7.1.5.3 $DATA

$D[ATA] (glvn)

This form returns a nonnegative integer which is a characterization of the glvn. The value of the integer
is p+d, where:

d = 1 if the glvn has a defined value, i.e., the NAME-TABLE entry for the name of the glvn
exists, and the subscript tuple of the glvn has a corresponding entry in the associated
DATA-CELL; otherwise, d=0.

p = 10 if the variable has descendants; i.e., there exists at least one tuple in the glvn's DATA-
CELL which satisfies the following conditions:

a) The degree of the tuple is greater than the degree of the glvn, and

b) the first N arguments of the tuple are equal to the corresponding subscripts of the
glvn where N is the number of subscripts in the glvn.

If no NAME-TABLE entry for the glvn exists, or no such tuple exists in the associated
DATA-CELL, then p=0.

7.1.5.4 $EXTRACT

$E[XTRACT] (expr)

This form returns the first (leftmost) character of the value of expr. If the value of expr is the empty
string, the empty string is returned.

$E[XTRACT] (expr , intexpr)

Let s be the value of expr, and let m be the integer value of intexpr. $EXTRACT(s,m) returns the m th
character of s. If m is less than 1 or greater than $LENGTH(s), the value of $EXTRACT is the empty
string. (1 corresponds to the leftmost character of s; $LENGTH(s) corresponds to the rightmost
character.)

$E[XTRACT] (expr , intexpr1 , intexpr2)

Let n be the integer value of intexpr2. $EXTRACT(s,m,n) returns the string between positions m and n of
s. The following cases are defined:

a) m > n. Then the value of $E is the empty string.

b) m = n. $E(s,m,n) = $E(s,m).

c) m < n '> $L(s).
$E(s,m,n) = $E(s,m) concatenated with $E(s,m+1,n).
That is, using the concatenation operator _ of 7.2.1.1, $E(s,m,n) =
$E(s,m)_$E(s,m+1)_..._$E(s,m+(n!m)).

d) m < n and $L(s) < n.
$E(s,m,n) = $E(s,m,$L(s)).

7.1.5.5 $FIND

$F[IND] (expr1 , expr 2)

This form searches for the leftmost occurrence of the value of expr 2 in the value of expr1. If none is
found, $FIND returns zero. If one is found, the value returned is the integer representing the number of
the character position imm ediately to the right of the rightmost character of the found occurrence of expr 2

in expr1. In particular, if the value of expr 2 is empty, $FIND returns 1.

$F[IND] (expr1 , expr 2 , intexpr)

Let a be the value of expr1, let b be the value of expr 2, and let m be the value of intexpr. $FIND(a,b,m)
searches for the leftmost occurrence of b in a, beginning the search at the max(m,1) position of a. Let p

28 M Programming Language ANSI X11.1 Canvass Version 1

be the value of the result of $FIND($EXTRACT(a,m,$LENGTH(a)),b). If no instance of b is found (i.e.,
p=0), $FIND returns the value 0; otherwise, $FIND(a,b,m) = p + max(m,1) ! 1.

7.1.5.6 $FNUMBER

$FN[UMBER] (numexpr , fncodexpr)

 fncodexpr ::= expr V fncode

 fncode ::= [fncodatom ...]

 * fncodp *
 * fncodt *
 fncodatom ::= * , * (note, comma)
 * + *
 * - * (note, hyphen)

 T T
fncodp ::= * P *
 * p *
 R R

 T T
fncodt ::= * T *
 * t *
 R R

This form returns a value which is an edited form of numexpr. Each fncodatom is applied to numexpr in
form atting the results by the following rules (order of processing is not significant):

fncodatom Action

 fncodp Represent negative numexpr values in parentheses. Let A be the absolute value
of numexpr. Use of fncodp will result in the following:

1) If numexpr < 0, the result will be "("_A_")".
2) If numexpr '< 0, the result will be " "_A_" ".

 fncodt Represent numexpr with a trailing rather than a leading "+" or "!" sign.
Note: if sign suppression is in force (ei ther by default on positiv e values,
or by design using the "!" fncodatom), use of fncodt will result in a
trailing space character.

 , Insert comm a delimiters every third position to the left of the decimal (present or
assumed) within numexpr. Note: no comma shall be inserted which would result
in a leading com ma character.

 + Force a plus sign ("+") on positive values of numexpr. Position of the "+"
(leading or trailing) is dependent on whether or not fncodt is present.

 ! Suppress the negative sign "!" on negative values of numexpr.

If fncodexpr equals an em pty string, no special formatting is perform ed and the result of the expression is
the original value of numexpr.

More than one occurrence of a particular fncodatom within a single fncode is identical to a single
occurrence of that fncodatom. Erroneous conditions are produced, with ecode="M2", when a fncodp is
present with any of the sign suppression or sign placem ent fncodatoms ("+!" or fncodt).

$FN[UMBER] (numexpr , fncodexpr , intexpr)

This form is identical to the two-argument form of $FNUMBER, except that numexpr is rounded to
intexpr fraction digits, including possible trailing zeros, before processing any fncodatoms. If intexpr is
zero, the evaluated numexpr contains no decimal point. Note: if (!1 < numexpr < 1), the result of
$FNUMBER has a leading zero ("0") to the left of the decimal point. Negative values of intexpr are

ANS I X11.1 Canvass Version 1 M Programming Language 29

reserved for future extensions of the $FNUM BER function.

7.1.5.7 $GET

$G[ET] (glvn)

This form returns the value of the specified glvn depending on its state, defined by $DATA(glvn). The
following cases are defined:

a) $D(glvn)#10 = 1
The value returned is the value of the variable specified by glvn.

b) Otherwise, the value returned is the empty string.

$G[ET] (glvn , expr)

This form returns the value of the specified glvn depending on its state, defined by $DATA(glvn). The
following cases are defined:

a) $D(glvn)#10 = 1
The value returned is the value of the variable specified by glvn.

b) Otherwise, the value returned is the value of expr.

Both glvn and expr will be evaluated before the function returns a va lue, so that the behav ior of this
function with respect to the naked indicator is well defined.

7.1.5.8 $JUSTIFY

$J[USTIFY] (expr , intexpr)

This form returns the value of expr right-justified in a field of intexpr spaces. Let m be $LENGTH(expr)
and n be the value of intexpr. The following cases are defined:

a) m '< n. Then the value returned is expr.

b) O therwise, the value returned is S(n!m) concatenated with expr1, where S(x) is a string of x
spaces.

$J[USTIFY] (numexpr , intexpr1 , intexpr2)

This form returns an edited form of the number numexpr. Let r be the value of numexpr after rounding to
intexpr2 fraction digits, including possible trailing zeros. (If intexpr2 is the value 0, r contains no decimal
point.) The value returned is $JUSTIFY(r, intexpr1). Note that if !1 < numexpr < 1, the result of
$JUSTIFY does have a zero to the left of the decimal point. Negative values of intexpr2 are reserved for
future extensions of the $JUSTIFY function.

7.1.5.9 $LENGTH

$L[ENGTH] (expr)

This form returns an integer which is the number of characters in the value of expr. If the value of expr is
the empty string, $LENGTH(expr) returns the value 0.

$L[ENGTH] (expr1 , expr 2)

This form returns the number plus one of nonoverlapping occurrences of expr 2 in expr1. If the value of
expr 2 is the empty string, then $LENGTH returns the value 0.

7.1.5.10 $NAME

$NA[ME] (glvn)

This form returns a string value which is the namevalue denoting the named glvn. Note that naked
references are perm itted in the argum ent, but that the returned value is always a non-naked reference. If
glvn includes an environment, then the namevalue shall include that environment; otherwise the

30 M Programming Language ANSI X11.1 Canvass Version 1

namevalue shall not include an environment.

$NA[ME] (glvn , intexpr)

This form returns a string value which is a namevalue denoting either all or part of the supplied glvn,
depending on the value of intexpr. Let $NAME(glvn) applied to the supplied glvn be of the form
Nam e(s1, s2, ..., sn), considering n to be zero if the glvn has no subscripts, and let m be the value of
intexpr. Then $NAME(glvn, intexpr) is defined as fol lows:

1) It is erroneous for m to be less than zero (ecode="M39").

2) If m = 0, the result is Name.

3) If n > m, the function returns the string returned by $NA(Nam e(s1, s2, ..., sm)).

4) Otherwise, the function returns the string returned by $NA(glvn).

7.1.5.11 $ORDER

$O[RDER] (glvn)

This form returns a value which is a subscript according to a subscript ordering sequence. This ordering
sequence is specified below with the aid of a function, CO, which is used for definitional purposes only,
to establish the collating sequence.

CO(s,t) is defined, for strings s and t, as follows:

W hen t fol lows s in the ordering sequence or if s is the empty string, CO(s,t) returns t.
Otherwise, CO(s,t) returns s.

The ordering sequence is defined using the collation algorithm determ ined as follows:

a) If $ORDER refers to a gvn with name global then the value of
$GET(^$GLOBAL("global","COLLATE")) determines the algorithm.

b) If $ORDER does not refer to a gvn, then the value of
$GET(^$CHARACTER(^$JOB($JOB,"CHARACTER"),"COLLATE")) determines the algorithm.

c) If the resulting algorithm is the empty string, then the collation algorithm of the charset M defined in
Annex A is used.

The collation value order of a string subscript using a collation algorithm collate may be determ ined by
executing the expression ("S order="_collate_"(subscript)"). Two collation values are compared on a
character-by-character basis using the $ASCII values (i.e. equiv alent to the follows (]) operator).

Only subscripted forms of glvn are perm itted. Let glvn be of the form NAME(s1, s2, ..., sn) where sn may
be the em pty string. Let A be the set of subscripts that follow sn. That is, for all s in A:

a) CO(sn,s) = s and
b) $D(NAME(s1, s2, ..., sn!1, s)) is not zero.

Then $ORDER(NAME(s1, s2, ..., sn)) returns that value t in A such that CO(t,s) = s for all s not equal to t ;
that is, all other subscripts which follow sn also follow t.

If no such t exists, $ORDER returns the empty string.

$O[RDER] (glvn , expr)

Let S be the value of expr. Then $ORDER(glvn,expr) returns:

a) If S = 1, the function returns a result identical to that returned by $ORDER(glvn).

b) If S = -1, the function returns a value which is a subscript, according to a subscript ordering
sequence. This ordering sequence is specified below with the aid of a functions CO and CP,
which are used for definitional purposes only, to establish the collating sequence.

CO(s,t) is def ined, for strings s and t, according to the collation algorithm of the specific

ANS I X11.1 Canvass Version 1 M Programming Language 31

charset.

CP(s,t) is def ined, for strings s and t, as follows:

W hen t fol lows s in the ordering sequence and s is not the empty string, CP(s,t) returns
s.
Otherwise, CP(s,t) returns t.

The following cases define the ordering sequence for CP:

1) CP("",t) = t.
2) CP(s,t) = t if CO(s,t) = s; otherwise, CP(s,t) = s.

Only subscripted forms of glvn are perm itted. Let glvn be of the form NAME(s1, s2, ..., sn

) where sn may be the empty string. Let A be the set of subscripts that precede sn. That
is, for all s in A:

1) CP(sn, s) = s and
2) $D(NAME(s1, s2, ..., sn-1, s)) is not zero.

Then $ORDER(NAME(s1, s2, ..., sn), -1) returns that value t in A such that CP(t,s) = t for
all s not equal to t; that is, all other subscripts which precede s also precede t.

If no such t exists, $ORDER(NAME(s1, s2, ..., sn), -1) returns the empty string.

c) Values of S other than 1 and -1 are reserved for future extensions of the $ORDER function.

7.1.5.12 $PIECE

$P[IECE] (expr1 , expr 2)

This form is defined here with the aid of a function, NF, which is used for definitional purposes only,
called find the position number following the m th occurrence.

NF(s,d,m) is defined, for strings s, d, and integer m, as follows:

W hen d is the empty string, the result is zero.

W hen m '> 0, the result is zero.

W hen d is not a substring of s, i.e., when $F(s,d) = 0, then the result is $L(s) + $L(d) + 1.

Otherwise, NF(s,d,1) = $F(s,d).

For m > 1, NF(s,d,m) = NF($E(s,$F(s,d),$L(s)),d,m!1) + $F(s,d) ! 1.

That is, NF extends $FIND to give the position number of the character to the right of the mth
occurrence of the string d in s.

Let s be the value of expr1, and let d be the value of expr 2. $PIECE(s,d) returns the substring of s
bounded on the right but not including the first (leftmost) occurrence of d.

$P(s,d) = $E(s,0,NF(s,d,1) ! $L(d) ! 1).

$P[IECE] (expr1 , expr 2 , intexpr)

Let m be the integer value of intexpr. $PIECE(s,d,m) returns the substring of s bounded by but not
including the m!1th and the mth occurrence of d.

$P(s,d,m) = $E(s,NF(s,d,m!1),NF(s,d,m) ! $L(d) ! 1).

$P[IECE] (expr1 , expr 2 , intexpr1 , intexpr2)

Let n be the integer value of intexpr2. $PIECE(s,d,m,n) returns the substring of s bounded on the left but
not including the m!1th occurrence of d in s, and bounded on the right but not including the nth
occurrence of d in s.

32 M Programming Language ANSI X11.1 Canvass Version 1

$P(s,d,m,n) = $E(s,NF(s,d,m!1),NF(s,d,n) ! $L(d) !1).

Note that $P(s,d,m,m) = $P(s,d,m), and that $P(s,d,1) = $P(s,d).

7.1.5.13 $QLENGTH

$QL[ENGTH] (namevalue)

See 7.1.4.12 for the definition of namevalue.

This form returns a value which is derived from namevalue. If namevalue has the form NAME(s1, s2, ...,
sn), considering n to be zero if there are no subscripts, then the function returns n.

Note that the namevalue is not "executed", and will not affect the naked indicator, nor generate an error
if the namevalue represents an undefined glvn. The naked indicator will only be af fected by the last gvn
reference (if any) executed while evaluating the argum ent.

7.1.5.14 $QSUBSCRIPT

$QS[UBSCRIPT] (namevalue , intexpr)

This form returns a value which is derived from namevalue. If namevalue has the form NAME(s1 , s2 , ...
, sn), considering n to be zero if there are no subscripts, and m is the value of intexpr, then
$QSUBSCRIPT(namevalue, intexpr) is defined as fol lows:

a) Values of m less than -1 are reserved for possible future use by extension of the standard.

b) If m = -1, the result is the environment if namevalue includes an environment; otherwise the
empty string.

c) If m = 0, the result is NAME without an environment even if one is present.

d) If m > n, the result is the empty string.

e) Otherwise, the result is the subscript value denoted by sm.

Note that the namevalue is not "executed", and will not affect the naked indicator, nor generate an error
if the namevalue represents an undefined glvn. The arguments are evaluated in left to right order, and
the naked indicator will only be af fected by the last gvn reference (if any) executed while evaluating
them.

7.1.5.15 $QUERY

$Q[UERY] (glvn)

Follow these steps:

a) Let glvn be a variable reference of the form Name(s1, s2, ..., sq) where sq may be the empty
string. If glvn is unsubscripted, initialize V to the form Name(""); otherwise, initialize V to glvn.

b) If the last subscript of V is empty, Goto step e.

c) If $D(V) \ 10 = 1, append the subscript "" to V, i.e., V is Name(s1, s2, ..., sq, "").

d) If V has no subscripts, return "".

e) Let s = $O(V).

f) If s = "", truncate the last subscript off V, Goto step d.

g) If s '= "", replace the last subscript in V with s.

h) If $D(V) # 2 = 1, return V formatted as a namevalue.

i) Goto step c.

If the value of $QUERY(glvn) is not the empty string and glvn includes an environment, then the
namevalue shall include the environment; otherwise the namevalue shall not include an environment.

ANS I X11.1 Canvass Version 1 M Programming Language 33

If the argument of $QUERY is a gvn, the naked indicator will become undefined and the value of
$REFERENCE will become equal to the empty string.

7.1.5.16 $RANDOM

$R[ANDOM] (intexpr)

This form returns a random or pseudo-random integer uniformly distributed in the closed interval
[0, intexpr!1]. If the value of intexpr is less than 1, an error condition occurs with ecode="M3".

7.1.5.17 $REVERSE

$RE[VERSE] (expr)

See Clause 7 for the definition of expr.

This form returns a string whose characters are reversed in order compared to expr.

$REVERSE(EXPR) is computationally equivalent to $$REV(EXPR) which is defined by the following
code

REV(E) Q $S(E="":"",1:$$REV($E(E,2,$L(E)))_$E(E,1))

7.1.5.18 $SELECT

 T T
$S[ELECT] (L * tvexpr : expr *)
 R R
This form returns the value of the leftm ost expr whose corresponding tvexpr is true. The process of
evaluation consists of evaluating the tvexprs, one at a time in left-to-right order, until the first one is
found whose value is true. The expr corresponding to this tvexpr (and no other) is evaluated and th is
value is made the value of $SELECT. An error condition occurs, with ecode="M4", if all tvexprs are
false. Since only one expr is evaluated at any invocation of $SELECT, that is the only expr which m ust
have a defined value.

7.1.5.19 $STACK

$ST[ACK] (intexpr)

This form returns a str ing as fo llows:
a) If intexpr is -1, returns the largest value of intexpr for which the $STACK function will return a
non-empty value. Note: if $ECODE is empty then $STACK(-1)=$STACK.

b) If intexpr is 0 (zero), returns an implem entation specific value indicating how this process was
started.

c) If intexpr is greater than 0 (zero) and less than or equal to $STACK(-1) indicates how this
level of the PROCESS-STACK was created:

1) If due to a command, the com mandword fully spelled out and in uppercase.
2) if due to an exfunc or exvar, the string "$$".
3) if due to an error, the ecode representing the error that created the result returned by
$STACK(intexpr).

d) If intexpr is greater than $STACK(-1), returns an empty string.

Values of intexpr less than -1 are reserved for future extensions of the $STACK function.

$ST[ACK] (intexpr , stackcodexpr)

stackcodexpr ::= expr V stackcode
 T T
 * PLACE *
 stackcode ::= * MCODE *
 * ECODE *

This form returns information about the action that created this level of the PROCESS-STACK as
follows:

34 M Programming Language ANSI X11.1 Canvass Version 1

stackcode Returned String

ECODE the list of any ecodes added at this lev el.

MCODE the value (in the case of an XECUTE) or the line for the location identified by
$STACK(intexpr,"PLACE"). If the line is not available, an empty string is returned.

PLACE the location of a command at the intexpr lev el of the PRO CESS-STACK as fol lows:

a) if intexpr is not equal to $STACK and $STACK(intexpr,"ECODE") would return the
empty string, the last command executed.

b) if intexpr is equal to $STACK and $STACK(intexpr,"ECODE") would return the em pty
string, the currently executing command.

c) if $STACK(intexpr,"ECODE") would return a non-em pty string, the last command to
start execution while $STACK(intexpr,"ECODE") would have returned the empty string.

The location is in the form:

place SP + eoffset
 T T
 place ::= * [label] [+ intlit] [^ | environment | routinename] *
 * @ *
 R R

eoffset ::= intlit

In place, the first case is used to identify the line being executed at the time of creation
of this level of the PROCESS-STACK. The second case (@) shows the point of
execution occurring in an XECUTE.

eoffset is an offset into the code or data identified by place at which the error occurred.
The value m ight point to the f irst or last character of a "token" just before or just af ter a
"token", or ev en to the com mand or line in which the error occurred. Implem entors
should prov ide as accurate a value for eoffset as practical.

All values of stackcode beginning with the letter Z are reserved for the implementation. All other values
of stackcode are reserved for future extensions of the $STACK function. stackcodes differing only in the
use of corresponding upper and lower case letters are equiv alent.

7.1.5.20 $TEXT

$T[EXT] (textarg)

 * + intexpr [^ routineref] *
 * *
textarg ::= * entryref *
 * *
 * @ expratom V textarg *

This form returns a string whose value is the contents of the line specified by the argument. Specifically,
the entire line, with eol deleted, is returned.

If the argument of $TEXT is an entryref, the line denoted by the entryref is specified. If entryref does not
contain dlabel then the line denoted is the f irst line of the routine. If the argument is of the form + intexpr
[^ routineref], two cases are defined. If the value of intexpr is greater than 0, the intexprth line of the
routine is specified; if the value of intexpr is equal to 0, the routinename of the routine is specified. An
error condition occurs, with ecode="M5", if the value of intexpr is less than 0. In all cases, if no routine is
explicitly specified, the currently-executing routine is used.

If no such line as that specified by the argument exists, an empty string is returned. If the line
specification is ambiguous, the results are not defined.

If a Character Set Profile input-transform is in effect, then the string is modified in accordance with the
transform .

7.1.5.21 $TRANSLATE

$TR[ANSLATE] (expr1 , expr 2)

ANS I X11.1 Canvass Version 1 M Programming Language 35

Let s be the value of expr1, $TRANSLATE(expr1,expr 2) returns an edited form of s in which all characters
in s which are found in expr 2 are removed.

$TR[ANSLATE] (expr1 , expr 2 , expr3)

Let s be the value of expr1, $TRANSLATE(expr1,expr 2,expr3) returns an edited form of s in which all
characters in s which are found in expr 2 are replaced by the positionally corresponding character in
expr3. If a character in s appears more than once in expr 2 the first (leftm ost) occurrence is used to
positionally locate the translation.

Translation is performed once for each character in s. Characters which are in s that are not in expr 2

remain unchanged. Characters in expr 2 which have no corresponding character in expr3 are deleted
from s (this is the case when expr3 is shorter than expr 2).

Note: If the value of expr 2 is the empty string, no translation is performed and s is returned unchanged.

7.1.5.22 $VIEW

$V[IEW] (unspecified)

makes available to the implementor a call for exam ining machine-dependent information. It is to be
understood that routines containing occurrences of $VIEW may not be portable.

7.1.5.23 $Z

$Z[unspecified] (unspecified)

is the initial letter reserved for defining non-standard intrinsic functions. This requirement permits the
unused function names to be reserved for future use.

7.2 Expression tail exprtail

 * * binaryop * expratom *
 exprtail ::= * * ['] truthop * *
 * *
 * ['] ? pattern *

The order of evaluation is as follows:

a) Evaluate the left-hand expratom.

b) If an exprtail is present immediately to the right, ev aluate its expratom or pattern and apply its
operator.

c) Repeat step b. as necessary, m ov ing to the right.

In the language of operator precedence, this sequence implies that all binary string, arithmetic, and
truth-valued operators are at the sam e precedence lev el and are applied in lef t-to-right order.

Any attempt to evaluate an expratom containing an lvn, gvn, or svn with an undefined v alue is
erroneous. A reference to a lvn with an undefined value causes an error condition with ecode="M6". A
reference to a gvn with an undefined value causes an error condition with ecode="M7". A reference to a
svn with an undefined value causes an error condition with ecode="M8".

7.2.1 Binary operator binaryop

 * * (Note: underscore)
 * + *
 * - * (Note: hyphen)
 binaryop ::= * * *
 * / *
 * # *
 * \ *
 * ** *

7.2.1.1 Concatenation operator

36 M Programming Language ANSI X11.1 Canvass Version 1

The underscore sym bol _ is the concatenation operator. It does not im ply any numeric interpretation.
The value of A_B is the string obtained by concatenating the values of A and B, with A on the left.

7.2.1.2 Arithmetic binary operators

The binary operators + ! * / \ # ** are called the arithmetic binary operators. They
operate on the num eric interpretations of their operands, and they produce num eric (in one case, integer)
resul ts.

+ produces the algebraic sum.

! produces the algebraic difference.

* produces the algebraic product.

/ produces the algebraic quotient. Note that the sign of the quotient is negative if and only
if one operand is positive and one operand is negative. Division by zero causes an error
condition with ecode="M9".

\ produces the integer interpretation of the result of the algebraic quotient.

produces the value of the left operand modulo the right argument. It is defined only for
nonzero values of its right operand, as follows.

 A # B = A ! (B * floor(A/B))
 where floor (x) = the largest integer '> x.

** produces the exponentiated value of the left operand, raised to the power of the right
operand. Results producing com plex num bers (eg, even num bered roots of negativ e
numbers) are not defined.

7.2.2 Truth operator truthop

 truthop ::= * relation *
 * logicalop *

7.2.2.1 Relational operator relation

 * = *
 * < *
 relation ::= * > *
 *] *
 * [*
 *]] *

The operators = < >] [and]] produce the truth value 1 if the relation between their operands which they
express is true, and 0 otherwise. The dual operators 'relation are defined by:

A 'relation B has the sam e v alue as '(A relation B).

7.2.2.2 Numeric relations

The inequalities > and < operate on the numeric interpretations of their operands; they denote the
conventional algebraic greater than and less than.

7.2.2.3 String relations

The relations =] [and]] do not im ply any num eric interpretation of either of their operands.

The relation = tests string identity. If the operands are not known to be num eric and numeric equality is
to be tested, the programmer may apply an appropriate unary operator to the nonnumeric operands. If
both arguments are known to be in numeric form (as would be the case, for example, if they resulted
from the application of any operator except _), application of a unary operator is not necessary. The
uniqueness of the num eric representation guarantees the equivalence of string and numeric equality
when both operands are numeric. Note, however, that the division operator / may produce inexact
results, with the usual problems attendant to inexact arithmetic.

ANS I X11.1 Canvass Version 1 M Programming Language 37

The relation [is called contains. A [B is true if and only if B is a substring of A; that is, A [B has the
sam e value as ''$FIND(A,B). Note that the empty string is a substring of every string.

The relation] is called follows . A] B is true if and only if A fol lows B in the sequence, defined here. A
follows B if and only if any of the following is true.

a) B is empty and A is not.

b) Neither A nor B is empty, and the leftmost character of A follows (i.e., has a num erically
greater $ASCII value than) the leftmost character of B.

c) There exists a positive integer n such that A and B have identical heads of length n, (i.e.,
$EXTRACT(A,1,n) = $EXTRACT(B,1,n)) and the remainder of A follows the remainder of B (i.e.,
$EXTRACT(A,n+1,$LENGTH(A)) follows $EXTRACT(B,n+1,$LENGTH(B))).

The relation]] is called sorts after. A]]B is true if and only if A follows B in the subscript ordering
sequence defined by the single argument $ORDER function as if that $ORDER refers to a lvn..

7.2.2.4 Logical operator logicalop

 logicalop ::= * & *
 * ! *

The operators ! and & are ca lled logical operators. (They are given the names or and and, respectively.)
They operate on the truth-value interpretations of their argum ents, and they produce truth-value results.

 A ! B = (0 if both A and B have the value 0)
(1 otherwise)

 A & B = (1 if both A and B have the value 1)
(0 otherwise)

The dual operators '& and '! are defined by:

 A '& B = '(A & B)
 A '! B = '(A ! B)

7.2.3 Pattern match pattern

The pattern m atch operator ? tests the form of the string which is its left-hand operand. S ? P is true if
and only if S is a member of the class of strings specified by the pattern P.

A pattern is a concatenated list of pattern atom s.

 * patatom ... *
 pattern ::= * *
 * @ expratom V pattern *

Assum e that pattern has n patatoms. S ? pattern is true if and only if there exists a partition of S into n
substrings

S = S1 S2 ... Sn

such that there is a one-to-one order-preserving correspondence between the S i and the pattern atom s,
and each S i satisfies its respective pattern atom. Note that some of the S i may be empty.

Each pattern atom consists of a repeat count repcount, followed by either a pattern code patcode or a
string literal strlit. A substring S i of S satisfies a pattern atom if it, in turn, can be decomposed into a
number of concatenated substrings, each of which satisfies the associated patcode or strlit.

 * patcode *
 * *
 patatom ::= repcount * strlit *
 * *
 * alternation *

38 M Programming Language ANSI X11.1 Canvass Version 1

 * intlit *
 repcount ::= * *
 * [intlit1] . [intlit 2] *

 * Y patnonY Y *
 patcode ::= * Z patnonZ Z * ...
 * patnonYZ *

 patnonY ::= any of the characters in ident except Y

 patnonZ ::= any of the characters in ident except Z

 patnonYZ ::= any of the characters in ident except Y and Z

 alternation ::= (patatom [, patatom] ...)

patcodes beginning with the initial letter Y are available for use by M program mers. patcodes beginning
with the initial letter Z are available for use by implem entors. patcodes are specified in Character Set
Profiles.

Patcodes differing only in the use of corresponding upper and lower case letters are equivalent. Each
patcode is satisfied by any single character in the union of the classes of characters represented, each
class denoted by its own patcode letter. Whether or not a specific character belongs to a patcode class
is determ ined by a process' Character Set Prof ile (charset).

An alternation is satisf ied if any one of its patatom components individually matches the corresponding
S i.

Each strlit is satisfied by, and only by, the value of strlit.

If repcount has the form of an indefinite m ultiplier ".", patatom is satisfied by a concatenation of any
number of S i (including none), each of which meets the specification of patatom.

If repcount has the form of a single intlit, patatom is satisfied by a concatenation of exactly intlit S i, each
of which meets the specification of patatom. In particular, if the value of intlit is zero, the corresponding
S i is empty.

If repcount has the form of a range, intlit1.intlit 2, the first intlit gives the lower bound, and the second intlit
the upper bound. If the upper bound is less than the lower bound an error condition occurs with
ecode="M10". If the lower bound is om itted, so that the range has the form .intlit 2 , the lower bound is
taken to be zero. If the upper bound is omitted, so that the range has the form intlit1. , the upper bound is
taken to be indefin ite; that is, the range is at least intlit1 occurrences. Then patatom is satisfied by the
concatenation of a number of S i, each of which meets the specification of patatom, where the number
must be within the expressed or implied bounds of the specified range, inclusive.

The dual operator '? is defined by:

A '? B = '(A ? B)

8 Commands

8.1 General command rules

Every command starts with a com mandword which dictates the syntax and interpretation of that
command instance. com mandwords dif fering only in the use of corresponding upper and lower case
letters are equivalent. The standard contains the following com mandwords:
 T T
 * B[REAK] *
 * C[LOSE] *
 * D[O] *
 * E[LSE] *
 * F[OR] *
 * G[OTO] *
 * H[ALT] *
 * H[ANG] *
 * I[F] *
 * J[OB] *

ANS I X11.1 Canvass Version 1 M Programming Language 39

 * K[ILL] *
 * L[OCK] *
 * M[ERGE] *
commandword ::= * N[EW] *
 * O[PEN] *
 * Q[UIT] *
 * R[EAD] *
 * S[ET] *
 * TC[OMMIT] *
 * TRE[START] *
 * TRO[LLBACK] *
 * TS[TART] *
 * U[SE] *
 * V[IEW] *
 * W[RITE] *
 * X[ECUTE] *
 * Z[unspecified] *
 R R

 Unused com mandwords other than those starting with the letter "Z" are reserved for future enhancement
of the standard.

Any implementation of the language must be able to recognize both the abbreviated com mandword (i.e.,
the character(s) to the left of the "[" in the list above) and the full spelling of each com mandword. W hen
two comm ands have a common abbreviated com mandword, their argum ent syntax uniquely
distinguishes them.

The formal definition of the syntax of command is a choice from among all of the indiv idual command
syntax definitions of 8.2.

 * syntax of BREAK command *
 * syntax of CLOSE command *
 * . *
 command ::= * . *
 * . *
 * syntax of XECUTE command *
 * syntax of Z[unspecified] command *

For all commands allowing m ultiple argum ents, the form

 com mandword arg1, arg2, ... argn

is equivalent in execution to

 com mandword arg1 com mandword arg2 ... com mandword argn

W ithin a command, all expratoms are evaluated in a left-to-right order with all expratoms that occur to
the left of the expratom being evaluated, including the complete resolution of any indirection, prior to the
evaluation of that expratom, except as explicitly noted elsewhere in this document. The expratom is
formed by the longest sequence of characters that satisfies the definition of expratom. (See 7.1 for a
description of expratom).

 An error condition occurs, with ecode="M11", when execution begins of any formalline unless that
formalline has just been reached as a result of an exvar, an exfunc, a JOB com mand jobargument, or a
DO command doargument that contains an actual list.

8.1.1 Spaces in commands

Spaces are significant characters. The following rules apply to their use in lines.

a) There may be a space imm ediately preceding eol only if the line ends with a comment.
(Since ls may imm ediately precede eol, this rule does not apply to the space which may stand for
ls.)

b) If a command instance contains at least one argument, the com mandword or postcond is
followed by exactly one space; if the command is not the last of the line, or if a comment fol lows,
the command is followed by one or m ore spaces.

40 M Programming Language ANSI X11.1 Canvass Version 1

c) If a command instance contains no argum ent and it is not the last command of the line, or if a
comment follows, the com mandword or postcond is followed by at least two spaces; if it is the
last command of the line and no comment follows, the com mandword or postcond is imm ediately
followed by eol.

8.1.2 Comment comment

If a semicolon appears in the com mandword initial-letter position, it is the start of a comment. The
remainder of the line to eol must consist of graphics only, but is otherwise ignored and nonfunctional.

8.1.3 Command argument indirection

Indirection is available for evaluation of either individual command arguments or contiguous sublists of
command arguments. The opportunities for indirection are shown in the syntax definitions accompanying
the com mand descriptions.

Typically, where a com mandword carries an argum ent list, as in

 com mandword SP L argument

the argument syntax will be expressed as

 * individual argument syntax *
 argument ::= * *
 * @ expratom V L argument *

This formulation expresses the following properties of argument indirection.

a) Argument indirection may be used recursively.

b) A single instance of argument indirection may evaluate to one complete argument or to a
subl ist of com plete argum ents.

Unless the opposite is explicitly stated, the text of each command specif ication describes the argum ents
after all indirection has been evaluated.

Unless expressed otherwise, if individual argument syntax allows the @ expratom contruct, then
argument indirection has precedence, i.e., the restriction on the value of expratom comes from the V
operator of the argument indirection, not any other type of indirection.

8.1.4 Post conditional postcond

All comm ands except ELSE, FOR, and IF may be m ade conditional as a whole by following the
com mandword immediately by the post-conditional postcond.

 postcond ::= [: tvexpr]

If the postcond is absent or the postcond is present and the value of the tvexpr is true, the command is
executed. If the postcond is present and the value of the tvexpr is false, the com mandword and its
argum ents are passed ov er without execution.

The postcond may also be used to conditionalize the arguments of DO, GO TO, and XECUTE. In such
cases the arguments' expratoms that occur prior to the postcond are evaluated prior to the evaluation of
the postcond.

8.1.5 Command timeout timeout

The OPEN, LOCK, JOB, and READ com mands em ploy an optional timeout specif ication, associated with
the testing of an external condition.

 timeout ::= : numexpr

If the optional timeout is absent, the command will proceed if the condition, associated with the definition
of the command, is satisfied; otherwise, it will wait until the condition is satisfied and then proceed.

$TEST will not be altered if the timeout is absent.

If the optional timeout is present, the value of numexpr must be nonnegative. If it is negative, the value

ANS I X11.1 Canvass Version 1 M Programming Language 41

0 is used. Num expr denotes a t-second timeout, where t is the value of numexpr.

If t = 0, the condition is tested. If it is true, $TEST is set to 1; otherwise, $TEST is set to 0.
Execution proceeds without delay.

If t is positive, execution is suspended until the condition is true, but in any case no longer than t
seconds. If, at the time of resumption of execution, the condition is true, $TEST is set to 1;
otherwise, $TEST is set to 0.

8.1.6 Line reference lineref

The DO , GOTO, and JO B com mands, extrinsic functions and extrinsic variables, as well as the $TEXT
function, contain in their argum ents means for referring to particular lines within any routine. This
subclause describes the means for making line references.

A reference to a line is either an entryref or a labelref. An entryref allows the specification of integer
offsets from a label (eg, LOO P+5 references the fifth line after the line that has LOOP for a label). Also,
an entryref allows indirection of both the label and the routinename. A labelref, on the other hand, allows
neither label offsets nor indirection.

 T T
 lineref ::= * entryref *
 * labelref *
 R R
8.1.6.1 Entry reference entryref

The total line specification in DO, GOTO , JOB, and $TEXT is in the form of entryref.

 * dlabel [+ intexpr] [^ routineref] *
 entryref ::= * *
 * ^ routineref *

If the routine reference (^ routineref) is absent, the routine being executed is implied. If the line
reference (dlabel [+intexpr]) is absent, the first line is implied.

If +intexpr is absent, the line denoted by dlabel is the one containing label in a defin ing occurrence. If
+intexpr is present and has the value n '< 0, the line denoted is the nth line after the one containing label
in a defining occurrence. A negative value of intexpr causes an error condition with ecode="M12".
W hen label is an instance of intlit, leading zeros are significant to its spelling.

In the contex t of DO , GO TO, or JOB, either of the following conditions causes an error condition with
ecode="M13".

a) A value of intexpr so large as not to denote a line within the bounds of the given routine.

b) A spelling of label which does not occur in a defining occurrence in the given routine.

In any context, reference to a particular spelling of label which occurs more than once in a defining
occurrence in the given routine will have undef ined results.

DO, GOTO, and JOB comm ands, as well as the $TEXT function, can refer to a line in a routine other
than that in which they occur; this requires a means of specifying a routinename.

Any line in a given routine may be denoted by mention of a label which occurs in a defining occurrence
on or prior to the line in question.

 * label *
 dlabel ::= * *
 * @ expratom V dlabel *

 * [| environment |] routinename *
 routineref ::= * *
 * @ expratom V routineref *

If the routineref includes an environment, then the routine is fetched from the specified environment.
Reference to a non-ex istent environment causes an error condition with an ecode="M26".

8.1.6.2 Label reference labelref

42 M Programming Language ANSI X11.1 Canvass Version 1

W hen the DO or JOB com mands or exfunc or exvar include parameters to be passed to the specified
routine, the +intexpr form of entryref is not permitted and the specified line must be a formalline. The
line specification labelref is used instead:

 * label [^ [| environment |] routinename] *
 labelref ::= * *
 * ^ [| environment |] routinename *

If the labelref includes an environment, then the routine is fetched from the specified environment.
Reference to a non-ex istent environment causes an error condition with an ecode="M26".

In the context of a DO or JOB command, an exfunc, or an exvar, a spelling of label which does not occur
in a defining occurrence in the given routine causes an error condition with ecode="M13".

8.1.6.3 External reference externref

externref ::= & [packagename .] externalroutinename

packagename ::= name

externalroutinename ::= name [^ name]

The ampersand (&) character designates a program whose nam espace is ex ternal to the current M
env ironm ent. The effects of passing param eters are as defined in 8.1.7 (Parameter Passing).

The packagename shall be from a nam espace of those determined by the appropriate namespace
registry. If packagename is not specified, im plem entors may, optionally, choose to prov ide a default
package.

Bindings may hav e one or m ore nam espaces; requirem ents to use these nam espaces m ust be clearly
stated in the specif ication of the binding. The term package is used herein to denote program s that are
in possibly external environments. No implied one-to-one correspondence for all possible external
packages ex ists.

The externalroutinename namespace is undefined; this is a function of a binding. Any external mapping
between the externalroutinename and any name used by an external package is an implem entation-
specific issue. The externalroutinename shall be of the form name or name^name.

8.1.7 Parameter passing

Parameter passing is a method of passing information in a controlled manner to and from a subroutine or
process as the result of an exfunc, an exvar, or a DO command with an actual list, or to a process as the
result of a JOB com mand with an actual list.

 actuallist ::= ([L actual])

 +Q S,
 * . actualname *
 actual ::= * *
 * expr *
 .Q S-

 * name *
 actualname ::= * *
 * @ expratom V actualname *

W hen parameter passing occurs, the formalline designated by the labelref must contain a formallist in
which the number of names is greater than or equal to the number of actuals in the actual list. The
correspondence between actual and formallist name is defined such that the first actual in the actual list
corresponds to the f irst name in the formallist, the second actual corresponds to the second formallist
name, etc. Similarly, the correspondence between the parameter list entries, as defined below, and the
actual or formallist names is also by position in left-to-right order. If the syntax of actual is .actualname,
then it is said that the actual is of the call-by-reference format; if the syntax of actual is expr it is said that
the actual is of the call-by-v alue format.

W hen parameter passing occurs, the following steps are executed:

ANS I X11.1 Canvass Version 1 M Programming Language 43

a) Process the actuals in left-to-right order to obtain a list of DATA-CELL pointers called the
param eter list. The param eter list contains one item per actual. The parameter list is created
according to the following rules:

1) If the actual is call-by-value, then evaluate the expr and create a DATA-CELL with a
zero tuple v alue equal to the result of the evaluation. The pointer to this DATA-CELL is
the parameter list item.

2) If the actual is call-by-reference, search the NAME-TABLE for an entry containing the
actual list name. If an entry is found, the param eter list item is the DATA-CELL pointer in
this NAME-TABLE entry. If the actual list name is not found, create a NAME-TABLE
entry containing the name and a pointer to a new (em pty) DATA-CELL. This pointer is
the parameter list item. If a jobargument contains a call-by-reference actual an error
occurs with ecode="M40" .

3) If the actual is null, create a new (empty) DATA-CELL.

b) Place the information contained in the formallist in the PROCESS-STACK frame.

c) For each name in the formallist, search the NAME-TABLE for an entry containing the name
and if the entry exists, copy the NAME-TABLE entry into the parameter frame and delete it from
the NAME-TABLE. This step performs an implicit NEW on the formallist names.

d) For each item in the parameter list, create a NAME-TABLE entry containing the
corresponding formallist name and the parameter list item (DATA-CELL pointer). This step binds
the formallist names to their respective actuals.

As a result of these steps, two (or more) NAME-TABLE entries may point to the same DATA-CELL. As
long as this common linkage is in effect, a SET or KILL of an lvn with one of the names appears to
perform an implicit SET or KILL of an lvn with the other name(s). Note that a KILL does not undo this
linkage of multiple names to the same DATA-CELL, although subsequent parameter passing or NEW
commands may.

Execution is then in itiated at the first command following the ls of the line specified by the labelref.
Execution of the subroutine continues until an eor or a QUIT is executed that is not within the scope of a
subsequently executed doargument, argum entless DO, xargument, exfunc, exvar, or FOR. In the case
of an exfunc or exvar, the subroutine m ust be term inated by a QUIT with an argum ent.

At the time of the QUIT, the formallist nam es are unbound and the original variable env ironm ent is
restored. See 8.2.16 for a discussion of the semantics of the QUIT operation.

W hen calling to an externref, pass-by-reference has the following additional implem entation independent
definition:

a) Upon return of control to M, changes to the value of the lvn referenced by the actualname
shall be as if the lvn was modif ied by a SET command. The exact m echanism perform ing this
operation is unspecified.

b) The resultant events are unspecified, if the data in the M environment is modified while an
external routine call is being made that references the modified data.

c) Local v ariables (see 7.1.1 Variables) that are not passed as parameters, will not necessarily
be av ailable to the external env ironm ent.

8.2 Command definitions

The specifications of all commands follow.

8.2.1 BREAK

 B[REAK] postcond * [SP] *
 * argument syntax unspecified *

BREAK provides an access point within the standard for nonstandard programm ing aids. BREAK
without arguments suspends execution until receipt of a signal, not specified here, from a dev ice.

8.2.2 CLOSE

44 M Programming Language ANSI X11.1 Canvass Version 1

 C[LOSE] postcond SP L closeargument

 * expr [: deviceparameters] *
 closeargument ::= * *
 * @ expratom V L closeargument *

 T T
 * deviceparam *
deviceparameters ::= * *
 * ([[deviceparam] :] ... deviceparam) *
 R R
 T T
deviceparam ::= * expr *
 * devicekeyword *
 * deviceattribute = expr *
 R R
devicekeyword ::= name

deviceattribute ::= name

The order of execution of deviceparams is from left to right within a dev iceparam eters usage.

If there is no mnemonicspace in use for a dev ice or the current mnemonicspace is the empty string then
the implementation may allow any of the forms of deviceparam. The expr form may not be m ixed with
the other forms within the same deviceparameters.

In all other cases the expr form is not allowed.

The value of the first expr of each closeargument identifies a dev ice (or file or data set). The
interpretation of the v alue of this expr is left to the implem entor. The dev iceparam eters may be used to
specify termination procedures or other information associated with relinquishing ownership, in
accordance with implementor interpretation.

Each designated device is released from ownership. If a device is not owned at the time that it is named
in an argument of an executed CLOSE, the command has no effect upon the ownership and the values
of the associated parameters of that device. Device parameters in effect at the time of the execution of
CLOSE are retained for possible future use in connection with the device to which they apply. If the
current dev ice is nam ed in an argument of an executed CLOSE, the implem entor m ay choose to execute
implicitly the comm ands OPEN P USE P, where P designates a predetermined default device. If the
implem entor chooses otherwise, $IO is given the value of the empty string.

8.2.3 DO

 * [SP] *
 D[O] postcond * *
 * SP L doargument *

 * entryref postcond *
 * *
 doargument ::= * labelref actuallist postcond *
 * *
 * externref [actuallist] postcond *
 * *
 * @ expratom V L doargument *

An argumentless DO initiates execution of an inner block of lines. If postcond is present and its tvexpr is
false, the execution of the command is complete. If postcond is absent, or the postcond is present and
its tvexpr is true, the DO places a DO fram e containing the current execution location, the current
execution level, and the current value of $TEST on the PROCESS-STACK, increases the execution level
by one, and continues execution at the nex t line in the routine. (See 6.3 for an explanation of routine
execution.) W hen encountering an implicit or explicit QUIT not within the scope of a subsequently
executed doargument, argum entless DO, xargument, exfunc, exvar, or FOR, execution of this block is
terminated (see 8.2.16 for a description of the actions of QUIT). Execution resumes at the command (if
any) following the argumentless DO.

DO with arguments is a generalized call to the subroutine specified by the entryref, the labelref, or the
externref in each doargument. The line specified by the entryref or labelref, must have a LEVEL of one.

ANS I X11.1 Canvass Version 1 M Programming Language 45

If the line specified is an externref then an implicit LEVEL of 1 is assumed, unless otherwise specified
within the binding. Execution of a doargument to a line whose LEVEL is not one causes an error
condition with ecode="M14".

If the actual list is present in an executed doargument, parameter passing occurs and the formalline
designated by labelref must contain a formallist in which the number of names is greater than or equal to
the number of actuals in the actual list. If the call is to an externref and an actual list is present, then
parameter passing occurs, and data is transferred (with any conversion as defined in the binding to the
external package).

Each doargument is executed, one at a time in left-to-r ight order, in the following steps.

a) Evaluate the expratoms of the doargument.

b) If postcond is present and its tvexpr is false, execution of the doargument is complete. If
postcond is absent, or postcond is present and its tvexpr is true, proceed to the step c.

c) A DO-fram e containing the current execution location and the execution level are placed on
the PROCESS-STACK.

d) If the actual list is present, execute the sequence of steps described in 8.1.7 Parameter
Passing.

e) Continue execution at the first command posit ion specified by the reference as fol lows:

1) For entryref and labelref, this is the first command that follows the ls of the line
specified by entryref or labelref. Execution of the subroutine (within the M env ironm ent)
continues until an eor or a QUIT is executed that is not within the scope of a
subsequently executed FOR, argum entless DO, doargument, xargument, exfunc, or
exvar. The scope of this internally referenced doargument is said to extend to the
execution of that QUIT or eor. (See 8.2.16 for a description of the actions of QUIT.)
Execution then returns to the first character position following the doargument.

2) For externref, this is the first executable item as specified within the package
environment. If the reference is external to M, execution proceeds in the specified
environment until term ination, as defined within that environment, occurs. Execution
then returns to the first character following the doargument.

8.2.4 ELSE

 E[LSE] [SP]

If the value of $TEST is 1, the remainder of the line to the right of the ELSE is not executed. If the value
of $TEST is 0, execution continues norm ally at the nex t command.

8.2.5 FOR

 F[OR] * [SP] *
 * *
 * SP lvn = L forparameter *

 * expr *
 forparameter ::= * numexpr1 : numexpr 2 : numexpr3 *

 * numexpr1 : numexpr 2 *

The scope of the FOR com mand begins at the next command following the FOR on the same line and
ends just prior to the eol on th is line.

The FOR with arguments specifies repeated execution of the commands within its scope for different
values of the local variable lvn, under successive control of the forparameters, from left to right. Any
expressions occurring in lvn, such as might occur in subscripts or indirection, are evaluated once per
execution of the FOR, prior to the first execution of any forparameter.

For each forparameter, control of the execution of the commands in the scope is specified as follows.
(Note that A, B, and C are hidden temporaries.)

a) If the forparameter is of the form expr1.

1) Set lvn = expr.

46 M Programming Language ANSI X11.1 Canvass Version 1

2) Execute the commands in the scope once.
3) Processing of this forparameter is complete.

b) If the forparameter is of the form numexpr1 : numexpr 2 : numexpr3

and numexpr 2 is nonnegative.

1) Set A = numexpr1.
2) Set B = numexpr 2.
3) Set C = numexpr3.
4) Set lvn = A.
5) If lvn > C, processing of this forparameter is complete.
6) Execute the commands in the scope once.
7) If lvn > C!B, processing of this forparameter is complete; an undefined value for lvn
causes an error condition with ecode="M15".
8) Otherwise, set lvn = lvn + B.
9) Go to 6.

c) If the forparameter is of the form numexpr1 : numexpr 2 : numexpr3
and numexpr 2 is negative.

1) Set A = numexpr1.
2) Set B = numexpr 2.
3) Set C = numexpr3.
4) Set lvn = A.
5) If lvn < C, processing of this forparameter is complete.
6) Execute the commands in the scope once.
7) If lvn < C!B, processing of this forparameter is complete; an undefined value for lvn
causes an error condition with ecode="M15".
8) Otherwise, set lvn = lvn + B.
9) Go to 6.

d) If the forparameter is of the form numexpr1 : numexpr 2.

1) Set A = numexpr1.
2) Set B = numexpr 2.
3) Set lvn = A.
4) Execute the commands in the scope once.
5) Set lvn = lvn + B; an undef ined value for lvn causes an error condition with
ecode="M15".
6) Go to 4.

If the FOR com mand has no argum ent:

a) Execute the commands in the scope once; since no lvn has been specified, it cannot be
referenced.

b) Goto a.

Note that form d. and the argumentless FOR, specify endless loops. Term ination of these loops must
occur by execution of a QUIT or GOTO within the scope of the FOR. These two term ination methods
are available within the scope of a FOR independent of the form of forparameter currently in control of
the execution of the scope; they are described below. Note also that no forparameter to the right of one
of form d. can be executed.

Note that if the scope of a FOR (the outer FOR) contains an inner FOR, one execution of the scope of
commands of the outer FOR encompasses all executions of the scope of commands of the inner FOR
corresponding to one com plete pass through the inner FO R com mand's forparameter list.

Execution of a QUIT within the scope of a FOR has two effects.

a) It terminates that particular execution of the scope at the QUIT; commands to the right of the
QUIT are not executed.

b) It causes any remaining values of the forparameter in control at the time of execution of the
QUIT, and the remainder of the forparam eters in the same forparameter list, not to be calculated
and the commands in the scope not to be executed under their control.

In other words, execution of QUIT effects the immediate termination of the innermost FOR whose scope

ANS I X11.1 Canvass Version 1 M Programming Language 47

contains the QUIT.

Execution of GO TO effects the imm ediate termination of all FOR commands in the line containing the
GO TO, and it transfers execution control to the point specified. Note that the execution of a QUIT within
the scope of a FOR does not affect the variable environment, e.g., stacked NEW frames are not
remov ed or processed.

8.2.6 GOTO

 G[OTO] postcond SP L gotoargument

 * entryref postcond *
 gotoargument ::= * *
 * @ expratom V L gotoargument *

GO TO is a generalized transfer of control. If provision for a return of control is desired, DO m ay be
used.

Each gotoargument is exam ined, one at a tim e in left-to-r ight order, until the f irst one is found whose
postcond is either absent, or whose postcond is present and its tvexpr is true. If no such gotoargument is
found, control is not transferred and execution continues normally. If such a gotoargument is found,
execution continues at the left of the line it specifies, provided the line has the same LEVEL as the line
containing the GOTO and, if the LEVEL of the line containing the GOTO is greater than one, there may
be no lines of lower execution LEVEL between the line specified by the gotoargument and the line
containing the GOTO, and the line containing the GOTO and the line specified by the gotoargument must
be in the same routine. Otherwise, an error occurs with ecode="M45".

8.2.7 HALT

 H[ALT] postcond [SP]

If the value of $TLEVEL is greater then zero, a ROLLBACK is perform ed. In any case, all nrefs are
removed from the LOCK-LIST associated with this process. Finally, execution of this process is
terminated.

8.2.8 HANG

 H[ANG] postcond SP L hangargument

 * numexpr *
 hangargument ::= * *
 * @ expratom V L hangargument *

Let t be the value of numexpr. If t '> 0, HANG has no effect. Otherwise, execution is suspended for t
seconds.

8.2.9 IF

 I[F] * [SP] *
 * *
 * SP L ifargument *

 * tvexpr *
 ifargument ::= * *
 * @ expratom V L ifargument *

In its argumentless form, IF is the inverse of ELSE. That is, if the value of $TEST is 0, the remainder of
the line to the right of the IF is not executed. If the value of $TEST is 1, execution continues normally at
the nex t command.

If exactly one argument is present, the value of tvexpr is placed into $TEST; then the function described
above is performed.

IF with n arguments is equivalent in execution to n IF commands, each with one argument, with the
respective arguments in the same order. This may be thought of as an implied and of the conditions
expressed by the argum ents.

8.2.10 JOB

 J[OB] postcond SP L jobargument

48 M Programming Language ANSI X11.1 Canvass Version 1

 * entryref [: jobparameters] *
 jobargument ::= * *
 * labelref actuallist [: jobparameters] *
 * *
 * @ expratom V L jobargument *

 * processparameters [timeout] *
 jobparameters ::= * *
 * timeout *

 * expr *
 processparameters ::= * *
 * ([[expr] :] ... expr) *

For each jobargument, the JOB command attempts to initiate another M process. If the actual list is
present in a jobargument, the formalline designated by labelref must contain a formallist in which the
number of names is greater than or equal to the number of exprs in the actual list.

The JOB command initiates this process at the line specified by the entryref or labelref. There is no
linkage between the started process and the process that initiated it. It is erroneous for a jobargument to
contain a call-by-reference actual (ecode="M40"). If the actual list is not present, the process will have no
variables initially def ined. (See 7.1.2.3 Process-Stack, and 8.1.7 Param eter passing).

The processparam eters can be used in an implementation-specific fashion to indicate partition size,
principal device, and the like.

If a timeout is present, the condition reported by $TEST is the success of initiating the process. If no
timeout is present, the value of $TEST is not changed, and process execution is suspended until the
process named in the jobargument is successfully initiated. The m eaning of success in either context is
defined by the implem entation.

8.2.11 KILL

 * [SP] *
 K[ILL] postcond * *
 * SP L killargument *

 * glvn *
 killargument ::= * (L lname) *
 * @ expratom V L killargument *

 * name *
 lname ::= * *
 * @ expratom V name *

The three argum ent forms of K ILL are given the fo llowing nam es.

a) glvn: Selective Kill.
b) (L lname): Exclusive Kill.
c) Em pty argum ent list: Kill All.

KILL is defined using a subsidiary function K(V) where V is a glvn.

a) Search for the name of V in the NAME-TABLE. If no such entry is found, the function is
completed. Otherwise, extract the DATA-CELL pointer and proceed to step b.

b) If V is unsubscripted, delete all tuples in the DATA-CELL.

c) If V has subscripts, then let N be the number of subscripts in V. Delete all tuples in the DATA-
CELL which have N or greater subscripts and whose first N subscripts are the same as those in
V.

Note that as a result of procedure K, $DATA(V)=0, i.e., the value of V is undefined, and V has no
descendants.

The actions of the three form s of K ILL are then defined as:

a) Selective Kill - apply K to the specified glvn.

b) Exclusive Kill - apply K to all names in the NAME-TABLE except those in the argument

ANS I X11.1 Canvass Version 1 M Programming Language 49

list. Note that the names in the argument list of an exclusive kill may not
be subscripted.

c) Kill All - apply K to all names in the NAME-TABLE.

If a variable N, a descendant of M, is killed, the killing of N affects the value of $DATA(M) as follows: if
N was not the only descendant of M, $DATA(M) is unchanged; otherwise, if M has a defined value
$DATA(M) is changed from 11 to 1; if M does not have a defined value $DATA(M) is changed f rom 10 to
0.

8.2.12 LOCK

 * [SP] *
 L[OCK] postcond * *
 * SP L lockargument *

 +)),
 * * + * * nref * *
 * * * * * [timeout] *
 lockargument ::= * * - * * (L nref) * *
 * .))- *
 * @ expratom V L lockargument *

 * [^] [| environment |] name [(L expr)] *
 nref ::= * *
 * @ expratom V nref *

LOCK provides a generalized interlock facility available to concurrently executing M processes to be
used as appropriate to the applications being programm ed. Execution of LOCK is not affected by, nor
does it directly affect, the state or value of any global or local variable, or the value of the naked
indicator. Its use is not required to access globals, nor does its use inhibit other processes from
accessing globals. It is an interlocking mechanism whose use depends on programm ers establishing and
following conventions.

Each lockargument specifies a subspace of the total M LOCK-UNIVERSE for the environment upon
which the executing process seeks to make or release an exclusive claim; the details of this subspace
specification are given below.

A special space for the lockspace is needed to create a synchronization mechanism for the executing
process for each of the environments referenced by the executing process. A timeout refers to the tim e
spent at the target environment
, any time delays due to comm unication delays are not part of the timeout.

For the purposes of this discussion, the LOCK-UNIVERSE is defined as the union of all possible nrefs in
one environment after resolution of all indirection. Further, there exists for each process a LOCK-LIST
that contains zero or more nrefs. Execution of lockarguments has the effect of adding or removing nrefs
from the process' LOCK-LIST. A given nref may appear more than once within the LOCK-LIST. The
nrefs in the LO CK-LIST specify a subset of the LOCK-UNIVERSE. This subspace, ca lled the process'
LOCKSPACE, consists of the union of the subspaces specif ied by all nrefs in the LO CK-LIST, as fo llows:

a) If the nref is unsubscripted, then the subspace is the set of the following points: one point for
the unsubscripted variable name nref and one point for each subscripted variable name
N(s1,...,s i) where N has the sam e spelling as nref.

b) If the occurrence of nref is subscripted, let the nref be N(s1,s2,...,sn). Then the subspace is
the set of the following points: one point for N(s1,s2,...,sn) and one point for each descendant (see
7.1.5.3 $DATA function for a definition of descendant) of nref.

If the LOCK com mand is argum entless, LOCK rem oves all nrefs from the LOCK-LIST associated with
this process.

Execution of lockargument occurs in the following order:

a) Any expression evaluation involv ed in processing the lockargument is performed.

b) If the form of lockargument does not include an initial + or ! sign, then prior to evaluating or
executing the rest of the lockargument, LOCK first removes all nrefs from the LOCK-LIST
associated with this process. Then it appends each of the nrefs in the lockargument to the
process' LOCK-LIST.

50 M Programming Language ANSI X11.1 Canvass Version 1

c) If the lockargument has a leading + sign, LOCK appends each of the nrefs in the
lockargument to the process' LOCK-LIST.

d) If the lockargument has a leading ! sign, then for each nref in the lockargument, if the nref
exists in the LOCK-LIST for this process, one instance of nref is removed from the LOCK-LIST.

An error occurs, with ecode="M41", if a process within a TRANSACTION attempts to remove from its
LOCK-LIST any nref that was present when the TRANSACTION started. W ith respect to each other
process, the effect of remov ing any nref from the LOCK-LIST is deferred until the global v ariable
modifications made since that nref was added to the LOCK-LIST are av ailable to that other process.

LOCK affects concurrent execution of processes having LOCK-SPACES that OVERLAP. Two LOCK-
SPACEs OVERLAP when their intersection is not empty. LOCK imposes the following constraints on the
concurrent execution of processes:

a) The LOCK-SPACEs of any two processes executing commands outside the scope of a
TRANSACTION may not OVERLAP.

b) All global variable modifications produced by the execution of commands by processes
having LOCK-SPACEs that OVERLAP must be equivalent to the modifications resulting from
some execution schedule during which their LOCK-SPACEs do not OVERLAP.

See the TRANSACTION Processing subclause for the definit ion of TRANSACTION.

The constraints imposed by LOCK on the execution of processes having LOCK-SPACEs that OVERLAP
may cause execution of one or more processes to be delayed. The max imum duration of such a delay
may be specified with a timeout.

If present, timeout modifies the execution of LOCK, described above, as follows:

a) If execution of the process is delayed and cannot be resumed prior to the expiration of
timeout, then the execution of the lockargument is unsuccessful. In this event the value of
$TEST is set to zero and any nrefs added to the LOCK-LIST as a result of executing the
lockargument are removed.

b) Otherwise, the execution of the lockargument is successful and $TEST is set to one.

If no timeout is present, then the value of $TEST is not affected by execution of the lockargument.

8.2.13 MERGE

 M[ERGE] postcond SP L mergeargument

 T T
 * glvn1 = glvn2 *
 mergeargument ::= * *
 * @ expratom V L mergeargument *
 R R

MERGE provides a facility to copy a glvn2 into a glvn1 and all descendants of glvn2 into descendants of
glvn1 according to the scheme described below.

MERGE does not KILL any nodes in glvn1, or any of its descendants.

Assum e that glvn1 is represented as A(i1, i2, ..., ix) (x'<0) and that glvn2 is represented as B(j1, j2, ..., jy)
(y'<0).

Then:

a) If $DATA(B(j1,j2,...,jy)) has a value of 1 or 11, then the value of glvn2 is given to glvn1.

b) The v alue for every occurrence of z, such that z > 0 and $DATA(B(j1, j2,...,jy+z)) has a value of
1 or 11, the v alue of B(j1,j2,...,jy+z) is given to A(i1, i2,...,ix,jy+1,jy+2,...,jy+z).

The state of the naked indicator wil l be modified as if $DATA(glvn2)#10=1 and the comm and SET
glvn1=glvn2 would have been executed.

ANS I X11.1 Canvass Version 1 M Programming Language 51

If glvn1 is a descendant of glvn2 or if glvn2 is a descendant of glvn1 an error condition occurs with
ecode="M19".

8.2.14 NEW

 * [SP] *
 N[EW] postcond * *
 * SP L newargument *

 * lname *
 * newsvn *
 newargument ::= * (L lname) *
 * @ expratom V L newargument *

 newsvn ::= * $ET[RAP] *
 * $ES[TACK] *

NEW provides a means of performing variable scoping.

The three argum ent forms of NEW are given the fo llowing nam es:

a) lname: Selective NEW
b) (L lname): Exclusive NEW
c) Em pty argum ent list: NEW All
d) newsvn NEW svn

The following discussion uses terms defined in the Variable Handling (see 7.1.2.2) and Process-Stack
(see 7.1.2.3) models and, like those subclauses, does not imply a required implem entation technique.
Each argument of the NEW comm and creates a CONTEXT-STRUCTURE consisting of a NEW
NAME-TABLE and an exclusive indicator, attaches it to a linked list of CONTEXT-STRUCTUREs
associated with the current PROCESS-STACK fram e, and modifies currently active NAME-TABLEs as
follows:

 a) NEW All marks the CO NTEXT-STRUCTURE as exclusive, copies the currently activ e
NAME-TABLE to the NEW NAME-TABLE and m akes all entries in the currently
act ive local v ariable NAME-TABLE poin t to empty DATA-CELLs.

 b) Exclusive NEW marks the CO NTEXT-STRUCTURE as exclusive, copies the currently activ e
NAME-TABLE to the NEW NAME-TABLE and changes all entries in the
currently active local v ariable NAME-TABLE, except for those corresponding to
nam es specif ied by the command argument, to point to empty DATA-CELLs.

 c) Selective NEW copies the entry corresponding to the name specified by the command argument
to the NEW NAME-TABLE and m akes that entry in the currently activ e
NAME-TABLE point to an empty DATA-CELL.

 d) NEW svn copies the entry corresponding to the name specified by the command argument
to the NEW NAME-TABLE and updates that entry as follows:

1) if the argument specifies $ESTACK, points to a DATA-CELL with a value of 0
(zero).

2) if the argument specifies $ETRAP, points to a DATA-CELL with a value
copied from the prior DATA-CELL (as pointed to by the just-copied
NAME-TABLE entry).

8.2.15 OPEN

 O[PEN] postcond SP L openargument

 * expr [: openparameters] *
 openargument ::= * *
 * @ expratom V L openargument *

 * deviceparameters [timeout [: mnemonicspec]] *
 * *

52 M Programming Language ANSI X11.1 Canvass Version 1

 openparameters ::= * [deviceparameters] :: mnemonicspec *
 * *
 * timeout [: mnemonicspec] *

 * mnemonicspace *
 mnemonicspec ::= * *
 * (L mnemonicspace) *

 mnemonicspace ::= expr V mnemonicspacename

 +)Q S)),
 * ident *
 mnemonicspacename ::= ident * digit * ...
 * . *
 * - * (Note: hyphen)
 .)Q S)-

mnemonicspace specifies the set of controlm nem onics that may be used within format argum ents to
subsequent READ and W RITE com mands. The mnemonicspace may be an empty string and may not
provide any defined controlm nem onics. mnemonicspacenames that start with any character other than
"Y" or "Z" are reserved for mnemonicspace definit ions registered by the MDC; those that start with "Z"
are implementor-specific.

W hen a mnemonicspec contains a list of mnemonicspaces, the first one determ ines the activ e
mnemonicspace, which may be changed by a USE command. If the device does not support the
mnemonicspace, an error condition occurs with ecode = "M35". If any mnemonicspaces in the
mnemonicspec are incompatible, an error occurs with ecode = "M36".

In addition to controlm nem onics a mnemonicspace also defines the valid dev iceattributes and
dev icekeywords which are associated with a dev ice. dev iceattributes and dev icekeywords which start
with the character “Z” are implem entor-specific. Associated with each dev iceattribute are one or m ore
values which are held in the ssvn ^$DEVICE.

The value of the first expr of each openargument identifies a dev ice (or file or data set). The
interpretation of the v alue of this expr or of any exprs in dev iceparam eters is left to the implem entor.
(see 8.2.2 for the syntax specification of dev iceparam eters.)

The OPEN com mand is used to obtain ownership of a device, and does not affect which device is the
current device or the value of $IO. (see the discussion of USE in 8.2.23)

For each openargument, the OPEN com mand attempts to seize exclusive ownership of the specified
dev ice. OPEN performs this function ef fectiv ely instantaneously as far as other processes are
concerned; otherwise, it has no effect regarding the ownership of devices and the values of the device
parameters. If a timeout is present, the condition reported by $TEST is the success of obtaining
ownership. If no timeout is present, the value of $TEST is not changed and process execution is
suspended until seizure of ownership has been successfully accomplished by the process that issued the
OPEN command.

Ownership is relinquished by execution of the CLO SE com mand. W hen ownership is relinquished, all
device parameters are retained. Upon establishing ownership of a device, any parameter for which no
specification is present in the openparameters is given the value m ost recently used for that dev ice; if
none exists, an implementor-defined default value is used.

8.2.16 QUIT

 * [SP] *
 * *
 Q[UIT] postcond * SP expr *
 * *
 * SP @ expratom V expr *

QUIT term inates execution of an argum entless DO com mand, doargument, xargument, exfunc, exvar, or
FOR command.

Encountering the end-of-routine mark eor is equivalent to an unconditional argumentless QUIT.

The effect of executing QUIT in the scope of FOR is fully discussed in 8.2.5. Note the eor never occurs
in the scope of FOR.

ANS I X11.1 Canvass Version 1 M Programming Language 53

If an executed QUIT is not in the scope of FOR, then it is in the scope of some argumentless DO
com mand, doargument, xargument, exfunc, or exvar if not explicitly then implicitly, because the initial
activation of a process, including that due to execution of a jobargument, may be thought of as arising
from execution of a DO nam ing the f irst executed rout ine of that process.

The effect of executing a Q UIT in the scope of an argum entless DO com mand, doargument, xargument,
exfunc, or exvar is to restore the previous variable environment (if necessary), restore the value of
$TEST (if necessary), restore the previous execution level, and continue execution at the location of the
invoking argumentless DO com mand, doargument, xargument, exfunc, or exvar.

If the expr is present in the QUIT and the return is not to an exfunc or exvar, an error condition occurs
with ecode="M16". If the expr is not present and the return is to an exfunc or exvar, an error condition
occurs with ecode="M17".

The following discussion uses terms defined in the Variable Handling (see 7.1.2.2) and Process-Stack
(see 7.1.2.3) models and, like those subclauses, does not imply a required implem entation technique.

Execution of a QUIT occurs as follows:

a) If an expr is present, evaluate it. This value becomes the value of the invoking exfunc or
exvar.

b) Remov e the frame on the top of the PROCESS-STACK. If no such frame exists, then
execute an implicit HALT.

c) If the PROCESS-STACK frame's l inked list of CONTEXT-STRUCTUREs contains NEW
NAME-TABLEs, process them in last-in-first-out order from their creation. If the
CONTEXT-STRUCTURE is exclusive, make all entries in the currently activ e local v ariable
NAME-TABLE point to em pty DATA-CELLs. In all cases, the NEW NAME-TABLEs are copied to
the currently active NAME-TABLEs. Note that, in the m odel, QUIT never encounters any restart
CONTEXT-STRUCTUREs in the linked list because they must have been removed by
TCO MM ITs or ROLLBACKs for the QUIT to reach this point in its execution.

d) If the frame contains formal list information, extract the formallist and process each name in
the list with the fol lowing steps:

1) Search the NAME-TABLE for an entry containing the name. If no such entry is found,
processing of this name is complete. Otherwise, proceed to step 2.

2) Delete the NAM E-TABLE entry for this name.

Finally, copy all NAME-TABLE entries from this frame into the NAME-TABLE.

Processing of this frame is complete, continue at step b.

e) If the frame is a TSTART fram e and $TLEVEL is greater than zero, QUIT generates an error
with ecode="M42". If the frame is a TSTART fram e and $TLEVEL is zero, then the fram e is
discarded.

f) If the frame is from an exfunc or exvar or from an argumentless DO command, set the value
of $TEST to the value saved in the frame.

g) Restore the execution level and continue execution at the location specified in the frame.

8.2.17 READ

 R[EAD] postcond SP L readargument

 * strlit *
 * format *
 readargument ::= * glvn [readcount] [timeout] *
 * * glvn [timeout] *
 * @ expratom V L readargument *

 readcount ::= # intexpr

The readarguments are executed, one at a time, in left-to-right order.

The forms strlit and format cause output operations to the current dev ice; the forms glvn and *glvn cause

54 M Programming Language ANSI X11.1 Canvass Version 1

input from the current device to the named variable (see 7.1.2.4 for a description of the value assignment
operation). If no timeout is present, execution will be suspended until the input message is term inated,
either explicitly or implicitly with a readcount. (See 8.2.23 for a definition of current device.)

If a timeout is present, it is interpreted as a t-second timeout, and execution will be suspended until the
input message is term inated, but in any case no longer than t seconds. If t '> 0, t = 0 is used.

W hen a timeout is present, $TEST is affected as follows. If the input message has been term inated at or
before the time at which execution resumes, $TEST is set to 1; otherwise, $TEST is set to 0.

W hen the form of the argument is *glvn [timeout], the input message is by definition one character long,
and it is explicitly term inated by the entry of one character, which is not necessarily from the ASCII set.
The value given to glvn is an integer; the mapping between the set of input characters and the set of
integer values given to glvn may be defined by the im plem entor in a dev ice-dependent m anner. If
timeout is present and the tim eout expires, glvn is given the value !1.

W hen the form of the argum ent is glvn [timeout], the input message is a string of arbitrary length which
is terminated by an implementor-defined procedure, which may be device-dependent. If timeout is
present and the timeout expires, the value given to glvn is the string entered prior to expiration of the
timeout; otherwise, the value given to glvn is the entire string.

W hen the form of the argum ent is glvn # intexpr [timeout], let n be the value of intexpr. If n '> 0 an error
condition occurs with ecode="M18". Otherwise, the input m essage is a string whose length is at m ost n
characters, and which is terminated by an implementor-defined, possibly device-dependent procedure,
which may be the receipt of the nth character. If timeout is present and the timeout expires prior to the
termination of the input message by either mechanism just described, the value given to glvn is the string
entered prior to the expiration of the timeout; otherwise, the value given to glvn is the string just
described.

W hen it has been specified that the current device is able to send control-sequences according to some
mnemonicspace, the READ will be terminated as soon as such a control-sequence has been entered (be
it by typing a function-key or by some other internal process within the device). The value of the
specified glvn will be the sam e as if instead of the control-sequence the usual terminator-character would
have been received before the control-sequence was sent.

W hen the form of the argum ent is strlit, it is equivalent to W RITE strlit. W hen the form of the argument
is format, it is equivalent to W RITE format.

$X and $Y are af fected by READ the same as if the com mand were W RITE with the sam e argum ent list
(except for timeouts and readcounts) and with each expr value in each writeargument equal, in turn, to
the final value of the respective glvn resulting from the READ.

Input operat ions, except when the form of the argum ent is *glvn [timeout], are affected by the Character
Set Profile input-transform . Output operations are af fected by the Character Set Prof ile output-
transform. (see 7.1.3.1 ^$CHARACTER)

8.2.18 SET

 S[ET] postcond SP L setargument

 setargument ::= T setdestination = expr T
 * @ expratom V L setargument *

 setdestination ::= T setleft T
 * (L setleft) *

 T leftrestricted T
 setleft ::= * leftexpr *
 * glvn *

 T $D[EVICE] T
 * $K[EY] *
 leftrestricted ::= * $X *
 * $Y *

 T setpiece T
 leftexpr ::= * setextract *
 * setev *

ANS I X11.1 Canvass Version 1 M Programming Language 55

 setpiece ::= $P[IECE] (glvn , expr1 [, intexpr1 [, intexpr2]])

 setextract ::= $E[XTRACT] (glvn [, intexpr1 [, intexpr2]])

 setev ::= * $EC[ODE] *
 * $ET[RAP] *

SET is the general means both for explicitly assigning values to variables, and for substituting new
values in pieces of a variable. Each setargument com putes one value, defined by its expr. That v alue is
then either assigned to each of one or more variables, or it is substituted for one or more pieces of a
variable's current value. Each variable is named by one glvn.

Each setargument is executed one at a time in left-to-right order. If the portion of the setargument to the
left of the = does not consist of $X or $Y then the execution of a setargument occurs in the following
order.

a) One of the following two operations is performed:

1) If the portion of the setargument to the left of the = consists of one or more glvns, the
glvns are scanned in left-to-right order and all subscripts are evaluated, in left-to-right
order within each glvn.

2) If the portion of the setargument to the left of the = consists of a setpiece, the glvn
that is the first argument of the setpiece is scanned in lef t-to-right order and all subscripts
are evaluated in left-to-right order within the glvn, and then the remaining arguments of
the setpiece are evaluated in lef t-to-right order.

b) The expr to the right of the = is evaluated. For each setleft, if it is a leftrestricted, the value to
be assigned or replaced is truncated or conv erted to m eet the inherent restrictions for that setleft
before the assignment takes place. This means that in one SET command, the various setlefts
may receive dif ferent values.

c) One of the following four operations is performed.

1) If the left-hand side of the set is one or more glvns, the value of expr is given to each
glvn, in left-to-right order. (See 7.1.2.2 for a description of the value assignment
operation).

2) For each setleft that is a setpiece, of the form $PIECE(glvn,d,m,n), the value of expr
replaces the mth through the nth pieces of the current value of the glvn, where the value
of d is the piece delimiter. Note that both m and n are optional. If neither is present,
then m = n = 1; if only m is present, then n = m. If glvn has no current v alue, the em pty
string is used as its current value. Note that the current value of glvn is obtained just
prior to replacing it. That is, the other arguments of setpiece are evaluated in left-to-right
order, and the expr to the right of the = is evaluated prior to obtaining the value of glvn.

Let s be the current value of glvn, k be the number of occurrences of d in s, that
is, k = max(0,$LENGTH(s,d) ! 1), and t be the value of expr. The following
cases are defined, using the concatenation operator _ of 7.2.1.1:

a) m > n or n < 1. The glvn is not changed and does not change the naked
indicator.

b) n '< m!1 > k. The value in glvn is replaced by s_F(m!1!k)_t, where
F(x) denotes a string of x occurrences of d, when x > 0;
otherwise, F(x) = "". In either case, glvn affects the
naked indicator.

c) m!1 '> k < n. The value in glvn is replaced by
$P(s,d,1,m!1)_F(min(m!1,1))_t.

d) Otherwise, The value in glvn is replaced by
$P(s,d,1,m!1)_F(min(m!1,1))_t_d_$P(s,d,n+1,k+1).

3) For each setleft that is a setextract of the form $EXTRACT(glvn,m,n), the value of
expr replaces the mth through the nth characters of the current value of the glvn. Note
that both m and n are optional. If neither is present, then m = n = 1; if only m is present,

56 M Programming Language ANSI X11.1 Canvass Version 1

then n = m. If glvn has no current v alue, the em pty string is used as its current value.
Note that the current value of glvn is obtained just prior to replacing it. That is, the other
arguments of setextract are evaluated in left-to-right order, and the expr to the right of
the = is evaluated prior to obtaining the value of glvn.

Let s be the current value of glvn, k be the number of characters in s, that is, k =
$LENGTH(s), and t be the value of expr. The following cases are defined, using the
concatenation operator _ of 7.2.1.1:

a) m > n or n < 1. The glvn is not changed and does not change the naked
indicator.

b) n '< m-1 > k. The value in glvn is replaced by s_$J("",m-1-k)_t.

c) m-1 '> k < n. The value in glvn is replaced by $E(s,1,m-1)_t.

d) Otherwise, The value in glvn is replaced by
$E(s,1,m-1)_t_$E(s,n+1,k).

In cases b), c) and d) the naked indicator is affected.

4) If the left-hand side of the SET is a setev, one of the following two operations is
performed:

a) If the setev is $ECODE, the current value of $ECODE is replaced by the
value of expr. If the value of the expr is the empty string,
$STACK($STACK,"ECODE") returns the empty string as do all forms of the
function $STACK($STACK+n) for all values of n greater than 0. Note that if the
value of $ECODE becomes non-empty, an error trap will be invoked.

b) If the setev is $ETRAP, the current value of $ETRAP is replaced by the value
of expr.

If the portion of the setargument to the left of the = is a $X or a $Y then the execution of the setargument
occurs in the following order:

a) The intexpr to the right of the = is evaluated.

b) The value of the intexpr is given to the special intrinsic variable on the left of the = with the
following restric tions and affects:

1) The range of values of $X and $Y are defined in 7.1.4.10. Any attempt to set $X or
$Y outside th is range specified in 7.1.4.10 is erroneous (ecode="M43") and the value of
$X or $Y will remain unchanged.

2) Setting $X or $Y changes the v alue of $X or $Y, respectively, but it does not cause
any input or output operation. The purpose is to allow a program to correct the value of
$X or $Y following input or output operations whose effect on the cursor position may not
be reflected in $X and $Y.

The value of the naked indicator may be modif ied as a side-effect of the execution of a SET command.
Ev ents that influence the v alue of the naked indicator are (in order of ev aluation):

1) references to glvns in exprs in arguments or subscripts of setlefts;

2) references to glvns in the expr on the righthand side of the = sign;

3) references to glvns in the setdestination.

8.2.19 TCOMMIT

TC[OMMIT] postcond [SP]

If $TLEVEL is one, TCOMM IT performs a COMM IT of the TRANSACTION and sets $TRESTART to zero.
(See the Transaction Processing subclause for the definition of CO MM IT).

If $TLEVEL is greater than one, TCOMM IT subtracts one from $TLEVEL.

ANS I X11.1 Canvass Version 1 M Programming Language 57

IF $TLEVEL is zero, TCOMM IT generates an error with ecode="M44".

Using the (m odel) linked list of RESTART CONTEXT-STRUCTUREs for the TRANSACTION, TCOM MIT
remov es the last created RESTART CONTEXT-STRUCTURE from both the PROCESS-STACK linked
list and the TRANSACTION linked list and discards the RESTART CONTEXT-STRUCTURE.

8.2.20 TRESTART

TRE[START] postcond [SP]

I f $TLEVEL is greater than zero, TRESTART performs a RESTART.

If $TLEVEL is zero, TRESTART generates an error with ecode="M44".

8.2.21 TROLLBACK

TRO[LLBACK] postcond [SP]

If $TLEVEL is greater than zero, a ROLLBACK is performed, $TLEVEL and $TRESTART are set to zero,
and the naked indicator becomes undefined. (See the Transaction Processing subclause for the
definition of RO LLBACK).

If $TLEVEL is zero, TROLLBACK generates an error with ecode="M44".

8.2.22 TSTART

 * [SP] *
 TS[TART] postcond * SP tstartargument *
 * SP @ expratom V tstartargument *
 R R

 tstartargument ::= [restartargument] [: transparameters]

 T T
 * lname *
 restartargument ::= * (L lname) *
 * * *
 * () *
 R R
 T T
 transparameters ::= * tsparam *
 * (tsparam [: tsparam] ...) *
 R R

 tsparam ::= tstartkeyword [= expr]

tstartkeywords that differ on ly in the use of corresponding upper and lower-case letters are equiv alent.
The standard def ines the following keywords:

S[ERIAL]
T[RANSACTIONID] = expr
Z[unspecified] [= expr]

Unused keywords other than those starting with the letter "Z" are reserved for future enhancement of the
standard.

After evaluation of postcond, if any, and tstartargument, if any, TSTART adds one to $TLEVEL. If , as a
result, $TLEVEL is one, then TSTART initiates a TRANSACTION that is restartable if a restartargument
is present, or non-restartable if restartargument is absent; and serializable independently of LOCKs if
transparameters are present and contain the keywords SERIAL or S, or dependent on LOCKs for
serialization if those keywords are absent.

The tsparam, TRANSACTIONID, prov ides a m eans for identify ing arbi trary classes of TRANSACTIONs.

The following discussion uses terms defined in the Variable Handling (see 7.1.2.2) and Process-Stack
(see 7.1.2.3) models and, like those subclauses, does not imply a required implem entation technique.
TSTART creates a RESTART CONTEXT-STRUCTURE containing the execution location of the TSTART
command, values for $TEST and the naked indicator, a copy of the process LOCK-LIST, a RESTART
NAME-TABLE and an exc lusiv e ind icator. TSTART attaches the CONTEXT-STRUCTURE to a linked list

58 M Programming Language ANSI X11.1 Canvass Version 1

of such RESTART CO NTEXT-STRUCTUREs for the current TRANSACTION and also to a linked list of
CONTEXT-STRUCTUREs associated with the current PROCESS-STACK frame. TSTART copies from
the currently active NAME-TABLE to the RESTART NAM E-TABLE all entries corresponding to the local
variable names specified by the restartargument. TSTART also points the entries in the RESTART
NAME-TABLE to copies of VALUE-TABLE tuples containing values that persist unchanged from the point
that the TSTART com mand created the NAME-TABLE. W hen the restartargument is an asterisk (*), it
specifies all current nam es and causes the CONTEXT-STRUCTURE to be m arked as exclusive.

8.2.23 USE

 U[SE] postcond SP L useargument

 T +Q , T
 * * : deviceparameters * *
 * expr * * *
 useargument ::= * * : [deviceparameters] : mnemonicspace * *
 * .Q - *
 * @ expratom V L useargument *

See 8.2.15 OPEN for mnemonicspace.

The value of the first expr of each useargument identifies a dev ice (or file or data set). The interpretation
of the v alue of this expr or of any exprs in dev iceparam eters is left to the implem entor. (see 8.2.2 for the
syntax specification of dev iceparam eters.)

Before a device can be employed in conjunction with an input or output data transfer it must be
designated, through execution of a USE command, as the current device. Before a device can be named
in an executed useargument, its ownership must have been established through execution of an OPEN
command.

The specified device remains current until such time as a new USE command is executed. As a side
effect of employing expr to designate a current device, $IO is given the value of expr.

Specification of device parameters, by means of the exprs in dev iceparam eters, is normally associated
with the process of obtaining ownership; howev er, it is possible, by execution of a USE com mand, to
change the parameters of a device previously obtained.

Distinct values for $X and $Y are retained for each dev ice. The special variables $X and $Y reflect those
values for the current device. When the identity of the current device is changed as a result of the
execution of a USE com mand, the values of $X and $Y are saved, and the values associated with the
new current device are then the values of $X and $Y.

8.2.24 VIEW

 V[IEW] postcond arguments unspecified

VIEW makes av ailable to the im plem entor a m echanism for exam ining m achine-dependent inform ation.
It is to be understood that routines containing the VIEW command may not be portable.

8.2.25 WRITE

 W[RITE] postcond SP L writeargument

 * format *
 writeargument ::= * expr *
 * * intexpr *
 * @ expratom V L writeargument *

The writearguments are executed, one at a time, in left-to-right order. Each form of argument defines an
output operation to the current device.

W hen the form of argum ent is format, processing occurs in left-to-right order.

 * *
 * * ! * ... [? intexpr] *
 format ::= * * # * *
 * *
 * ? intexpr *
 * *
 * /controlmnemonic [(expr [, expr] ...)] *
 R R

ANS I X11.1 Canvass Version 1 M Programming Language 59

 T T +)Q S),
 * ? * * ident *
 controlmnemonic ::= * * * * ...
 * ident * * digit *
 R R .)Q S)-

The following describes the effect of specific characters when used in a format:
! causes a new line operation on the current device. Its effect is the equivalent of writing

CR LF on a pure ASCII device. In addition, $X is set to 0 and 1 is added to $Y.

causes a top of form operation on the current device. Its effect is the equivalent of
writing CR FF on a pure ASCII device. In addition, $X and $Y are set to 0. W hen the
current device is a display, the screen is blanked and the cursor is positioned at the
upper lef t-hand corner.

? intexpr
produces an effect sim ilar to tab to column intexpr. If $X is greater than or equal to
intexpr, there is no effect. Otherwise, the effect is the same as writing (intexpr ! $X)
spaces. (Note that the leftm ost colum n of a line is column 0.)

/ controlmnemonic [(expr [, expr] ...)]
produces an effect which is defined by the mnemonicspace which has been assumed by
default or has been selected in a prev ious mnemonicspace specification with a USE
command. The relevant control-function is indicated by means of the controlm nem onic
which must be defined in the above-mentioned mnemonicspace. Possible param eters
are given through the optional exprs. Controlm nem onics which start with the character
"?" are implem entor-specific.

The implementor may restrict the use of controlm nem onics in a dev ice-dependant way.
A reference to an undefined mnemonicspace or an undefined controlm nem onic is
reflected in special variable $DEVICE.

W hen the form of argum ent is expr, the value of expr is sent to the device. The effect of this string at the
device is defined by appropriate device handling.

W hen the form of the argum ent is *intexpr, one character, not necessarily from the ASCII set and whose
code is the number represented in decimal by the value of intexpr, is sent to the device. The effect of
this character at the dev ice m ay be defined by the im plem entor in a dev ice-dependent m anner.

As W RITE transmits characters one at a time, certain characters or character combinations represent
device control functions, depending on the identity of the current device. To the extent that the
supervisory function can detect these control characters or character sequences, they will alter $X and
$Y as fo llows.
 graphic : add 1 to $X
 backspace : set $X = max($X!1,0)
 line feed : add 1 to $Y
 carriage return : set $X = 0
 form feed : set $Y = 0, $X = 0

W hen a format specification is interpreted and the effect would cause the 'physical' external equivalent
of $X and $Y to be modified, this effect will be reflected as far as possible in the values of the special
variables $X and $Y.

Output operat ions, except when the form of the argum ent is *intexpr, are affected by the Character Set
Prof ile output-transform.

8.2.26 XECUTE

 X[ECUTE] postcond SP L xargument

 * expr postcond *
 xargument ::= * *
 * @ expratom V L xargument *

XECUTE provides a means of executing M code which arises from the process of expression evaluation.

Each xargument is evaluated one at a time in left-to-right order. If the postcond in the xargument is
present and its tvexpr is false, the xargument is not executed. Otherwise, if the value of expr is x,
execution of the xargument is executed in a manner equivalent to execution of DO y, where y is the
spelling of an otherwise unused label attached to the following two-line subroutine considered to be a
part of the currently executing routine:

60 M Programming Language ANSI X11.1 Canvass Version 1

 y ls x eol

 ls QUIT eol

8.2.27 Z

 Z[unspecified] arguments unspecified

All com mandwords in a given implementation which are not defined in the standard are to begin with the
letter Z. This convention protects the standard for future enhancem ent.

9. Character Set Profile charset

A charset is a definition of the valid characters and their characteristics available to a process. The
required characteristics for a fully defined charset are:

 a) The character codes and their meaning
 b) The definition of which character codes are valid in names
 c) The available patcodes and their definitions
 d) The collation order of character strings.

Note: a charset definition is not necessarily tied to any (natural) language and could be an arbitrary set of
characters or a repertoire from another set, such as ISO 10646.

charset ::= name

The definition of the contents of standardized charsets is in Annex A. Unused charset names beginning
with the initial letter Y are available for usage by M program mers; those beginning with the initial letter Z
are reserved for vendor-defined charsets; all other charset names are reserved for future enhancement
of the standard.

ANS I X11.1 Canvass Version 1 M Programming Language 61

American National Standard for Information Systems - Programming Languages - M
(Section 2: M Portability Requirements)

Introduction
Section 2 highlights, for the benefit of implementors and application
program mers, aspects of the language that m ust be accorded special attention if
M program transferabi lity (i.e., portabi lity of source code between v arious M
implementations) is to be achieved. It prov ides a specif ication of l im its that must
be observed by both implementors and programm ers if portability is not to be
ruled out. To this end, im plementors must meet or exceed these limits, treating
them as a minimum requirem ent. Any implem entor who prov ides definitions in
currently undefined areas must take into account that this action risks
jeopardizing the upward compatibility of the implementation, upon subsequent
rev ision of the M Language Specifica tion. Application program mers striving to
develop portable programs must take into account the danger of employing
``unilateral ex tensions'' to the language m ade av ailable by the implem entor.

The fo llowing def initions apply to the use of the term s explicit limit and implicit
limit within this document. An explicit lim it is one which applies directly to a
referenced language construct. Implicit lim its on language constructs are
second-order effects resulting from explic it lim its on other language constructs.
For example, the explicit com mand line length restriction places an implicit lim it
on the length of any construct which must be expressed entirely within a single
command line.

62 M Programming Language ANSI X11.1 Canvass Version 1

1 Character Set

The character set used for routines and data is restricted to the Character Set Profile M (as defined in
Annex A).

2 Expression elements

2.1 Names

The use of ident in nam es is restricted to upper case alphabetic characters. W hile there is no explicit
limit on name length, only the first eight characters are uniquely distinguished. This length restriction
places an im plic it lim it on the num ber of un ique names.

2.2 External routines and names

The externalroutinename namespace is unspecified, as this is a function of the binding, although at the
present time, a max imum of twenty-four (24) characters allowed is placed upon externalroutinenames to
be treated uniquely, although this should be viewed as a minimum number that needs to be handled
rather than as the max imum number that can be used. Any number of characters, from one to the
maximum num ber shall be valid as externalroutinenames. Any additional external mapping between
these names and any actually used by an external package is an implem entation issue.

2.3 Local variables

2.3.1 Number of local variables

The num ber of local variable nam es in existence at any tim e is not explicitly lim ited. However, there are
implicit lim itations due to the storage space restrictions (Clause 8).

2.3.2 Number of subscripts

There is no explicit lim it on the num ber of distinct local variable nodes which m ay be defined, but there is
an im plicit lim it based on the number of subscripts that m ay be defined for any local variable reference.
The number of subscripts in a local variable is limited in that, in a local array reference, the total length of
the array reference must not exceed the maxim um string length (see 2.8). The length of an array
reference is calculated as follows:
assuming an array reference in the form
name(i1,i2, ... ,in)
 N = $L(name)
 I = $L(i1) + $L(i2) + ... + $L(in)

where each subscript (i1 through in) is either a num lit or a sublit
 L = n

then the total length of an array reference is
 N + I + (2 * L) + 15

2.3.3 Values of subscripts

Local variable subscript values are nonempty strings which shall only contain characters from the M
printable character subset. There is no specific restriction on the length of a subscript, but a complete
variable name reference is limited according to the restrictions specified in 2.3.2. When the subscript
value satisfies the definition of a numeric data value (See 7.1.4.3 of Section 1), it is further subject to the
restrictions of num ber range giv en in 2.6. The use of subscript values which do not meet these criteria is
undefined, except for the use of the empty string as the last subscript of a starting reference in the
context of data transversal functions such as $ORDER and $QUERY.

2.4 Global variables

2.4.1 Number of global variables

There is no explicit limit on the number of distinct global variable names in existence at any time.

2.4.2 Number of subscripts

The num ber of subscripts in a global variable is lim ited in that, in a global array reference, the total length
of the array reference must not exceed the maxim um string length (see 2.8). The length of an array
reference is calculated as follows:
assuming an array reference in the form :
^|environment|name(i1,i2, ... ,in)
 E = $L(environment)
 N = $L(name)
 I = $L(i1) + $L(i2) + ... + $L(in)

ANS I X11.1 Canvass Version 1 M Programming Language 63

where each subscript (i1 through in) is either a num lit or a sublit
 L = n

then the total length of an array reference is
 E + 3 + N + I + (2 * L) + 15

2.4.3 Values of subscripts

The restrictions imposed on the values of global variable subscripts are identical to those imposed on
local v ariable subscripts (see 2.3.3).

2.4.4 Number of nodes

There is no explicit limit on the number of distinct global variable nodes which may be defined.

2.5 Data types

The M Language Specification defines a single data type, namely, variable length character strings.
Contexts which demand a num eric, integer, or truth value interpretation are satisfied by unambiguous
rules for mapping a string datum into a number, integer, or truth value.

The im plementor is not lim ited to any particu lar in ternal representation. Any internal representation(s)
may be em ployed as long as all necessary m ode conversions are perform ed autom atically and all
external behavior agrees with the M Language Specification. For example, integers might be stored as
binary integers and converted to decimal character strings whenever an operation requires a string value.

2.6 Number range

All values used in arithmetic operations or in any context requiring a numeric interpretation are within the
inclusive intervals [-1025, -10-25] or [10-25, 1025], or are zero.

 Implem entations shall represent numeric quantities with at least 15 significant digits. The error
introduced by any single instance of the arithmetic operations of addition, subtraction, multiplication,
division, integer division, or modulo shall not exceed one part in 1015. The error introduced by
exponentiation shall not exceed one part in 107.

Program mers should exercise caution in the use of noninteger arithm etic. In general, arithm etic
operations on noninteger operands or arithmetic operations which produce noninteger results cannot be
expected to be exact. In particular, noninteger arithmetic can yield unexpected results when used in loop
control or arithmetic tests.

2.7 Integers

The magnitude of the v alue resulting f rom an integer interpretation is lim ited by the accuracy of num eric
values (see 2.6). The values produced by integer valued operators and functions also fall within this
range (see 7.1.4.6 of Section 1 for a precise def inition of integer interpretation).

2.8 Character strings

Character string length is limited to 255 characters. The characters permitted within character strings
must include those defined in the ASCII Standard (ANSI X3.4-1986).

2.9 Special variables

The special variables $X and $Y are nonnegative integers (see 2.7). The effect of incrementing $X and
$Y past the maximum allowable value is undefined. (For a description of the cases in which the values of
$X and $Y may be altered see 8.2.25 of Section 1; for a description of the type of values $X and $Y may
have see 7.1.4.10 of Section 1). The v alue of $SYSTEM as prov ided by an implem entor m ust conform to
the requirem ents for a local variable subscript (see 2.3.3).

3 Expressions

3.1 Nesting of expressions

The number of levels of nesting in expressions is not explicitly limited. The max imum string length does
impose an im plicit lim it on this num ber (see 2.8).

3.2 Results

Any result, whether intermediate or final, which does not satisfy the constraints on character strings (see
2.8) is erroneous. Furthermore, integer results are erroneous if they do not satisfy the constraints on
integers (see 2.7).

64 M Programming Language ANSI X11.1 Canvass Version 1

3.3 External References

External references are not portable.

4 Routines and command lines

4.1 Command lines

A com mand line (line) must satisfy the constraints on character strings (see 2.8). The length of a
command line is the number of characters in the line up to but not including the eol.

The characters within a comm and line are restricted to the 95 ASCII printable characters. The character
set restriction places a corresponding implicit restriction upon the value of the argument of the indirection
delim iter (Clause 7).

4.2 Number of command lines

There is no explicit limit on the number of command lines in a routine, subject to storage space
restrictions (Clause 8).

4.3 Number of commands

The num ber of commands per line is lim ited only by the restriction on the m axim um com mand line length
(see 4.1).

4.4 Labels

A label of the form name is subject to the constraints on nam es; labels of the form intlit are subject to the
length constraint on nam es (see 2.1).

4.5 Number of labels

There is no explicit limit on the number of labels in a routine. However, the following restrictions apply:

 a) A com mand line m ay hav e only one label.

 b) No two lines may be labeled with equiv alent (not un iquely distinguishable) labels.

4.6 Number of routines

There is no explicit limit on the number of routines. The number of routines is implicitly limited by the
nam e length restriction (see 2.1).

5 External routine calls

W hen the external routine called is not within the current default M environment, all variables should be
assumed to be scalars (i.e., a refers to the value associated with a, but does not refer to any
descendants a m ight hav e such as a(1), etc.). No prohibition against non-scalar extensions should be
inferred, only that they may not be portable. It should be noted that no all-encompassing implied
guarantee of the number of routines supported by an external package exists.

6 Character Set Profiles

Character Set Profiles are registered through the MUMPS Dev elopment Com mittee (ANSI X11). New
Character Set Profi le Definitions are approved through the standard procedures of the MUMPS
Development Com mittee.

Routines and data created using a registered Character Set Profile are portable to all implementations
which support that Character Set Profile.

The list of MDC registered Character Set Profi les is included in Annex A.

Note that subscript-string length (see 2.3.2, 2.3.3, 2.4.2, 2.4.3) is either the length of the value of the
subscript, or the length of the com puted Character Set Prof ile collation v alue, whichever is larger.

7 Indirection

The values of the argument of indirection and the argument of the XECUTE com mand are subject to the
constraints on character string length (see 2.8). They are additionally restricted to the character set

ANS I X11.1 Canvass Version 1 M Programming Language 65

lim itations of com mand lines (see 4.1).

8 Storage space restrictions

The size of a single routine must not exceed 10,000 characters. The size of a routine is the sum of the
sizes of all the lines in the routine. The size of each line is its length (as defined in 4.1) plus two.

The size of local variable storage must not exceed 10,000 characters. This size is defined as the sum of
the sizes of all defined local variables, whether within the current NEW context or defined in a higher
level NEW contex t. The size of an unsubscripted local variable is the length of its nam e in characters
plus the length of its value in characters, plus four. The size of a local array is the sum of the following:

 a) The length of the name of the array.

 b) Four characters plus the length of each value.

 c) The size of each subscript in each subscript list.

 d) Two additional characters for each node N, whenever $DATA(N) is 10 or 11.

All subscripts and values are considered to be character strings for this purpose.

9 Process-Stack

System s will prov ide a m inim um of 127 levels in the PRO CESS-STACK. The actual use of a ll these
levels may be lim ited by storage restrictions (Clause 8).

Nesting within an expression is not counted in this lim it. Expression nesting is not explicitly limited;
howev er, it is implic itly lim ited by the storage restriction (Clause 8).

10 Formats

Dev ice control may be effected through the READ and W RITE com mands using the /controlm nem onic
syntax in a specification of a format. In general, portability of routines containing such syntax is only
possible in cases which m eet several criteria, m ost obv iously

a) the devices to be used at the receiving facility must have all the capabilities required by the
/controlm nem onic occurrences in the routines;

b) the implem entors of the systems at both the originating and the receiving facilities have
implemented each combination of mnemonicspace and controlm nem onic in compatible ways.

As a result of these lim itations, 'blind interchange' will only be dependent upon the devices at the
receiving site.

However, the following advice to both implementors and programm ers will increase the number of cases
in which 'informed interchange' will be possible.

10.1 mnemonicspace

For portabil ity, the mnemonicspace to be used must be a generally accepted standard, e.g. ANSI
X3.64-199_ or GKS, or after such a standard would have been accepted, any other ANSI or ISO
standard.

10.2 controlmnemonic

For portability, the controlm nem onic must be one of the controlm nem onics assigned to a control-function
specified in the chosen mnem onicspace and interpretation of the format specification must lead to the
effect described in the mnemonicspace. There should be no other (side-)effects on the device.

W ith regard to the status of the process, the value of some special variables may change, e.g. with some
control-funct ions $X and $Y would have to receive proper v alues. Apart from these docum ented effects,
no other effects may be caused by any implementation.

An im plem entation needs not to allow for all controlm nem onics in al l mnem onicspaces.

10.3 Parameters

66 M Programming Language ANSI X11.1 Canvass Version 1

A format containing /controlm nem onic may conta in one or m ore param eters, specified as L expr, in
which case each expr specifies a parameter of the control-function. The exprs must appear in the same
order and number as the parameters in the corresponding mnem onicspace. The value of each expr
should meet the limitations of 2.6 through 2.8.

11 Transaction processing

11.1 Number of modifications in a TRANSACTION

The sum of the lengths of the namevalues and values of global variable tuples modified within a
TRANSACTION m ust not exceed 57,343 characters.

11.2 Number of nested TSTARTs within a TRANSACTION

A single TRANSACTION m ust not contain more than 126 TSTARTs after the TSTART that initiates the
TRANSACTION.

12 Other portability requirements

Program mers should exercise caution in the use of noninteger v alues for the HANG command and in
timeouts. In general, the period of actual time which elapses upon the execution of a HANG command
cannot be expected to be exact. In particular, relying upon noninteger values in these situations can lead
to unexpected results.

Implem entations may restrict access to ssvns that contain default environments of processes other than
the one referring to the ssvn. Therefore, portable programs shall not rely on the ssvns defined in 7.1.3.9
when processid is not their own $JOB.

ANS I X11.1 Canvass Version 1 M Programming Language 67

American National Standard for Information Systems - Programming Languages - M
(Section 3: X3.64 Binding)

Introduction

ANSI X3.64 is a functional standard for additional control functions for data interchange
with two-dimensional character-imaging input and/or output devices. It is an ANSI
standard, but also an ISO standard with roughly similar characteristics ex ists (ISO 2022).
As such, it has been implemented in many devices worldwide. It is expected that M can
be easily adapted to these implementations.

The standard defined as ANSI X3.64 defines a format for device-control. No physical
device is required to be able to perform all possible control-functions. In reality, as some
functions rely on certain physical properties of specif ic dev ices, no dev ice will be able to
perform all functions. The standard, however, does not specify which functions a device
should be able to do, but if it is able to perform a function, how the control-information for
this function is to be specified.

This binding is to the functional definitions included in X3.64. The actual dialogue
between the M im plem entation and the dev ice is left to the im plem entor.

68 M Programming Language ANSI X11.1 Canvass Version 1

1 The binding

ANSI X3.64 is accessed from the M language by making use of mnemonicspaces. A controlm nem onic
from X3.64 m ay be accessed as follows:

/controlm nem onic [(expr [, expr] ...)]

 where the relev ant controlm nem onic equalling the generic function and exprs the possible applicable
parameters. The use of a controlm nem onic produces the effect defined in ANSI X3.64 for the control-
function with the same name as the controlm nem onic specified.

Som e controlm nem onics return a v alue, or a collection of v alues. It is perfect ly legal to issue these
controlm nem onics with either a READ or WRITE command. If a READ command is used, the argument
list in the statement(s) must be ordered to correctly accept the returned values. If a W RITE command is
used the values returned may be read by a single, or series of, READ commands. These READ
commands must be correctly ordered to m atch the returned values, howev er there m ay be interm ediate
calculations utilizing some of the returned values before reading the remaining values in the list. Reading
the return list of values may be term inated without error by issuing another controlm nem onic. In this
case, all returned values not assigned to a variable will be lost to the application program.

All controlm nem onics have the same name in M as in X3.64.

Unless explicitly mentioned, the use of X3.64 controlm nem onics has no side-effects on special variables
such as $X, $Y, $KEY and $DEVICE.

1.1 Control-functions w ith an effect on $X or $Y or both

Below follows a list of control-functions (X3.64) or controlm nem onics (M) that have an effect on the
special variables $X or $Y or both. Since some definitions in X3.64 are fairly open-ended, the exact
effect may be im plem entation dependent in some cases. In section 3.4 these open-ended def initions are
listed resolution of possible ambiguities are stated.

The relevant controlm nem onics are:

/CBT(n) $X
/CHA(x) $X
/CHT(n) $X
/CNL(n) $X, $Y
/CPL(n) $X, $Y
/CUB(n) $X
/CUD(n) $Y
/CUF(n) $X
/CUP(y,x) $X, $Y
/CUU(n) $Y
/CVT(n) $Y
/HPA(x) $X
/HPR(n) $X
/HTJ $X
/HVP(y,x) $X, $Y
/IND $Y
/NEL $X, $Y
/PLD $Y
/PLU $Y
/REP(n) $X, $Y
/RI $Y
/RIS $X=0, $Y=0
/VPA(y) $Y
/VPR(n) $Y

The control-function REP repeats the prev ious character or function as many tim es as indicated by its
argument. Hence, the side-effects of this function do not depend on this function itself, but rather on the
character or function that is being repeated.

1.2 Control-functions w ith an effect on $KEY

Currently only one controlm nem onic may have a side-effect on special variable $KEY: /DSR (dev ice
status report). The side-effect depends on the value of the parameter of this function: parameter-value 0
or 5 will cause a status report to be returned, param eter-value 6 will cause the active cursor-position to
be returned. The format of the v alue returned is:

ANS I X11.1 Canvass Version 1 M Programming Language 69

$CHAR(27,91)_REPO RT_$CHAR(110)
or

$CHAR(27,91)_Y_$CHAR(59)_X_$CHAR(82)

where REPORT is a code for the status reported, Y is the value of the current Y-coordinate and X is the
value of the current X-coordinate.

The values described will be reported in special variable $KEY as a side-effect of the first READ
command that is executed after the control-function has been issued.

1.3 Control-functions w ith an effect on $DEVICE

All controlm nem onics will have a side-effect on special variable $DEVICE. The m ost comm on situation
will be that $DEVICE will receive the value:

"0,,X3-64"

in order to reflect the correct processing of a controlm nem onic.

In certain situations a status has to be indicated. Status codes for $DEVICE relating to X3.64 are as
follows:

code Am erican English Description
1 mnem onicspace not found
2 invalid m nem onic
3 parameter out of range
4 hardware error
5 mnemonic not available for this device
6 parameter not available for this device
7 attempt to mov e outside boundary - not moved
8 attempt to move outside boundary - m oved to boundary
9 auxiliary device not ready

1.4 Open-ended definitions

Under some conditions, the behavior specified by X3.64 is either ambiguous or optional. The following
clarifies the behavior to ensure consistency:
CBT Mov e the cursor to the last horizontal tabulator-stop in the previous line. If no such tabulator-stop

exists, don't move the cursor.
CHA when a location outside the available horizontal range is specified:

Move the cursor in the direct ion suggested by the param eter-value to e ither the rightmost
(parameter value greater than current position) or leftmost (parameter value less than current
position) position.

CHT when no further forward horizontal tabulator-stops have been defined in the current line:
Mov e the cursor to the first horizontal tabulator-stop in the next line. If no such tabulator-stop
exists, don't move the cursor.

CNL when the cursor is mov ed forward beyond the last line on the device:
Do not mov e the cursor. If the output device is a CRT-screen, scroll up one line.

CPL when the cursor is mov ed backward beyond the first line on the device:
Do not mov e the cursor. If the output device is a CRT-screen, scroll down one line.

CUB when the cursor is mov ed backward beyond the first position on a line:
Do not move the cursor.

CUD when the cursor is mov ed downward beyond the last line on a device:
Do not move the cursor.

CUF when the cursor is mov ed forward beyond the last position on a line:
Do not move the cursor.

CUP when a location outside the available horizontal or vertical ranges is specified:
Do not move the cursor.

CUU when the cursor is mov ed upward beyond the last line on a device:
Do not move the cursor.

CVT when no further forward vertical tabulator-stops have been defined on the device:
Mov e the cursor to the first vertical tabulator-stop in the next page. If no such tabulator-stop
exists, don't move the cursor.

HPA when a location outside the available horizontal range is specified:
Move the cursor in the direct ion suggested by the param eter-value to e ither the rightmost
(parameter value greater than current position) or leftmost (parameter value less than current
position) position.

HPR when a location outside the available horizontal range is specified:
Move the cursor in the direct ion suggested by the param eter-value to e ither the rightmost
(parameter value positive) or leftmost (parameter value negative) position.

70 M Programming Language ANSI X11.1 Canvass Version 1

HTJ when no further forward horizontal tabulator-stops have been defined in the current line:
Mov e the cursor to the first horizontal tabulator-stop in the next line. If no such tabulator-stop
exists, don't move the cursor.

HVP when a location outside the available horizontal or vertical ranges is specified:
Do not move the cursor.

IND when the cursor is mov ed downward beyond the last line on a device:
Mov e the cursor to the corresponding horizontal position in the first line on the next page.

NEL when the cursor is mov ed downward beyond the last line on a device:
Mov e the cursor to the first position on the first line on the next page.

PLD this function may or may not be similar to CUD or IND. The effect of two successive PLD
operations may or may not be equal to the effect of one single CUD or IND operation:
This function will be identical to CUD.
The effect of PLD and PLU will be com plem entary, i.e. .PLD im mediately followed by PLU will
effectively not m ove the cursor.

PLU this function may or may not be similar to CUU or RI. The effect of two successive PLU
operations may or may not be equal to the effect of one single CUU or RI operation:
This function will be identical to CUU.
The effect of PLD and PLU will be com plem entary, i.e. .PLU im mediately followed by PLD will
effectively not m ove the cursor.

RI when the cursor is mov ed upward beyond the first line on a device:
Mov e the cursor to the corresponding horizontal position in the last line on the previous page.

VPA when a location outside the vertical range is specified:
Move the cursor in the direct ion suggested by the param eter-value to e ither the bottom most
(parameter value greater than current position) or topmost (parameter value less than current
position) position.

VPR when a location outside the vertical range is specified:
Move the cursor in the direct ion suggested by the param eter-value to e ither the bottom most
(parameter value positive) or topmost (parameter value negative) position.

The following functions shall not cause the cursor to move: ICH, JFY, MC, NP, DL and PP.

The following functions shall move the cursor so that it will point to the same character in the new
projection of the information: SD, SL, SR and SU. Boundary conditions wil l be similar to CUD, CUB, CUF
and CUU respectively.

2 Portability issues

2.1 Implementation

Any implem entation of this binding will accept all controlm nem onics specified. However, in most cases
all controlm nem onics will not be supported for all dev ices. The appropriate error code will be return in
$DEVICE to indicate if a particu lar controlm nem onic is supported for the current device.

2.2 Application

Sev eral controlm nem onics specified in X3.64 are ambiguous and usage of these will likely have different
meaning between different devices and implem entations. Usage of these will not be portable.

Control-
mnem onic Control Function

APC Application Program Com mand
DA Dev ice Attributes
DCS Dev ice Control String
FNT Font Selection
INT Interrupt
OSC Operating System Command
PLD Partial Line Down (CUD recomm ended; see 1.4)
PLU Partial Line Up (CUU recomm ended; see 1.4)
PM Privacy Message
PU1 Private Use One
PU2 Private Use Two
SGR Select Graphic Rendition for the following:
10 primary font
11 first alternative font
12 second alternative font
13 third alternative font
14 forth alternative font
15 fifth alternative font

ANS I X11.1 Canvass Version 1 M Programming Language 71

16 sixth alternative font
17 seventh alternative font
18 eighth alternative font
19 ninth alternative font
SS2 Single Shift Two
SS3 Single Shift Three

3 Conformance

Each implementation must supply a list of the controlm nem onic and arguments that are supported for
each device.

72 M Programming Language ANSI X11.1 Canvass Version 1

Annex A (normative)

Character Set Profiles

The defin ition of a Character Set Prof ile requires the defin ition of four e lem ents)) the names of the
characters in the character set and the internal codes which are used to represent them, the definitions of
which characters match which pattern codes, the collation scheme used, and the definition of which
characters may be used in names.

1 charset M
Table A.1 - Character Set M

The charset M is defined using the following table. The values in columns headed Decimal and
Character are taken from ASCII (X3.4-1990). The column headed patcode defines which characters
match the patcodes A, C , E, L, N, P, and U. The characters which are defined as ident are those in the
table with a patcode of A. Note that patcode E m atches any character, not just those listed in this
charset.

+))0))),
* Decimal Character patcode * Decimal Character patcode *
/))3)))1
* 0 NUL C,E * 64 @ P,E *
* 1 SOH C,E * 65 A A,U,E *
* 2 STX C,E * 66 B A,U,E *
* 3 ETX C,E * 67 C A,U,E *
* 4 EOT C,E * 68 D A,U,E *
* 5 ENQ C,E * 69 E A,U,E *
* 6 ACK C,E * 70 F A,U,E *
* 7 BELL C,E * 71 G A,U,E *
* 8 BS C,E * 72 H A,U,E *
* 9 HT C,E * 73 I A,U,E *
* 10 LF C,E * 74 J A,U,E *
* 11 VT C,E * 75 K A,U,E *
* 12 FF C,E * 76 L A,U,E *
* 13 CR C,E * 77 M A,U,E *
* 14 SO C,E * 78 N A,U,E *
* 15 SI C,E * 79 O A,U,E *
* 16 DLE C,E * 80 P A,U,E *
* 17 DC1 C,E * 81 Q A,U,E *
* 18 DC2 C,E * 82 R A,U,E *
* 19 DC3 C,E * 83 S A,U,E *
* 20 DC4 C,E * 84 T A,U,E *
* 21 NAK C,E * 85 U A,U,E *
* 22 SYN C,E * 86 V A,U,E *
* 23 ETB C,E * 87 W A,U,E *
* 24 CAN C,E * 88 X A,U,E *
* 25 EM C,E * 89 Y A,U,E *
* 26 SUB C,E * 90 Z A,U,E *
* 27 ESC C,E * 91 [P,E *
* 28 FS C,E * 92 \ P,E *
* 29 GS C,E * 93] P,E *
* 30 RS C,E * 94 ^ P,E *
* 31 US C,E * 95 _ (underscore) P,E *
* 32 SP (space) P,E * 96 ` P,E *
* 33 ! P,E * 97 a A,L,E *
* 34 " P,E * 98 b A,L,E *
* 35 # P,E * 99 c A,L,E *
* 36 $ P,E * 100 d A,L,E *
* 37 % P,E * 101 e A,L,E *
* 38 & P,E * 102 f A,L,E *
* 39 ' (apostrophe) P,E * 103 g A,L,E *
* 40 (P,E * 104 h A,L,E *
* 41) P,E * 105 i A,L,E *
* 42 * P,E * 106 j A,L,E *
* 43 + P,E * 107 k A,L,E *
* 44 , (comma) P,E * 108 l A,L,E *
* 45 - (hyphen) P,E * 109 m A,L,E *
* 46 . P,E * 110 n A,L,E *
* 47 / P,E * 111 o A,L,E *
* 48 0 N,E * 112 p A,L,E *
* 49 1 N,E * 113 q A,L,E *
* 50 2 N,E * 114 r A,L,E *
* 51 3 N,E * 115 s A,L,E *
* 52 4 N,E * 116 t A,L,E *
* 53 5 N,E * 117 u A,L,E *
* 54 6 N,E * 118 v A,L,E *
* 55 7 N,E * 119 w A,L,E *
* 56 8 N,E * 120 x A,L,E *
* 57 9 N,E * 121 y A,L,E *
* 58 : P,E * 122 z A,L,E *
* 59 ; P,E * 123 { P,E *
* 60 < P,E * 124 | P,E *
* 61 = P,E * 125 } P,E *
* 62 > P,E * 126 ~ P,E *
* 63 ? P,E * 127 DEL C,E *
.))2)))-

The exact collation value of a string is not defined here. However the collating value for any
implementation m ust sat isfy the following rules when used for com paring two strings:

ANS I X11.1 Canvass Version 1 M Programming Language 73

Let s be any non-em pty string, let m and n be strings satisfying the definition of numeric data values
(see I.7.1.4.3), and u and v be non-empty strings which do not satisfy this definition. Then the
col lating ordering funct ion CO is:

a) CO("",s) = s.
b) CO(m,n) = n if n > m; o therwise, CO(m,n) = m
c) CO(m,u) = u
d) CO(u,v) = v if v] u where the ordering characters is determined by the relative positions in the

table above; otherwise CO(u,v) = u.

In words, all strings follow the em pty string, canonic num eric strings collate in num eric order,
numerics precede nonnumeric strings, and nonnumeric strings are ordered by the ASCII value of
their characters.

2 charset ASCII

The charset ASCII is defined to be identical to M (see clause 1 above) with the exception of the collating
sequence:

The collating value of a string is defined to be equal to the string value.

3 charset JIS90

The charset JIS90 supports an encoding of Japanese characters. The specification for this was
developed by the MUMPS Dev elopment Coordinating Com mittee - Japan and is described in JIS X0201-
1990 and JIS X0208-1990. The English translation is partially reproduced in Annex H for information
purposes. The reader should refer to JIS X0201-1990 and JIS X0208-1990 for full definition.

(Note that Annex H is inform ational.)

74 M Programming Language ANSI X11.1 Canvass Version 1

Annex B (informative)

Error code translations

M1 naked indicator undefined
M2 invalid combination with P fncodatom
M3 $RANDOM seed less than 1
M4 no true condition in $SELECT
M5 lineref less than zero
M6 undefined lvn
M7 undefined gvn
M8 undefined svn
M9 div ide by zero
M10 invalid pattern match range
M11 no parameters passed
M12 invalid lineref (negative offset)
M13 invalid lineref (line not found)
M14 line level not 1
M15 undef ined index variable
M16 argumented QUIT not allowed
M17 argumented QUIT required
M18 fixed length READ not greater than zero
M19 cannot copy a tree or subtree into itself
M20 line must have formallist
M21 algorithm specification invalid
M22 SET or KILL to ^$GLOBAL when data in global
M23 SET or KILL to ^$JOB for non-existent job number
M24 change to collation algorithm while subscripted local variables defined
M26 non-ex istent environment
M27 attem pt to rollback a transaction that is not restartable
M28 mathematical function, parameter out of range
M29 SET or KILL on ssvn not allowed by implementation
M30 reference to glvn with different collating sequence within a collating algorithm
M31 controlm nem onic used for device without a mnemonicspace selected
M32 controlm nem onic used in user-defined mnemonicspace which as no associated line
M33 SET or KILL to ^$ROUTINE when routine exists
M35 dev ice does not support mnemonicspace
M36 incompatible mnemonicspaces
M37 READ from device identified by the empty string
M38 invalid ssvn subscript
M39 invalid $NAME argument
M40 call-by-reference in JOB actual
M41 invalid LOCK argument with in a TRANSACTION
M42 invalid QUIT with in a TRANSACTION
M43 invalid range value ($X,$Y)
M44 invalid command outside of a TRANSACTION
M45 invalid GOTO reference
M57 more than one defining occurence of label in routine
M58 too few formal param eters

ANS I X11.1 Canvass Version 1 M Programming Language 75

Annex C (Informative)

Metalanguage element dictionary

::= definition
 [] optional element
| | group of alternate choices
... optional indefinite repetition
actual actual argument
actual list actual argument list
actualname actual argument name
algoref algorithm reference
alternation alternation
argument argument of a command
binaryop binary operator
charset character set
charsetexpr character set expression
closeargument CLOSE argument
command command
commands commands separated by cs
com mandword com mand word
comment comment
controlm nem onic control m nem onic
CR carriage return character
cs command separator
device device
dev iceattribute dev ice attribute
dev icekeyword dev ice keyword
deviceparam device parameter
dev iceparam eters dev ice param eters
devicexpr device expression
digit decim al digit
dlabel indirect label (evaluated

label)
doargument DO argument
ecode error code
emptystring empty string
entryref entry reference
environment set of distinct names
eoffset error offset
eol end-of-line
eor end-of-routine
exfunc extrinsic function
exp exponent
expr expression
expratom expression atom
expritem expression item
exprtail expression tail
externalroutinename external routine name
externref external reference
extid external identifier
extsyntax external syntax
exttext external text
exvar extrinsic v ariable
fncodatom $FNUMBER code atom
fncode $FNUMBER code
fncodexpr $FNUMBER code

expression
fncodp $FNUMBER code P
fncodt $FNUMBER code T
FF form feed character
formalline form al line (line with

form allist)
formallist formal argum ent list
format I/O format code
forparameter FOR argument
function intrinsic function
glvn global or local variable

name

gnamind global name indirection
gotoargument GO TO argument
graphic graphic (character with

visible representation)
gvn global variable name
gvnexpr global variable name

expression
hangargument HANG argument
ident identification
ifargument IF argument
intexpr expr, value interpreted as

an integer
intlit integer literal
jobactual list JOB actual argum ent list
jobargument JOB argument
jobparam eters JOB param eters
killargument KILL argument
L list (list of)
label label of a line
labelref label reference
leftexpr left expression
leftrestricted left restricted
levelline level line (line without

form allist)
LF line feed character
li level indicator
line line in routine
linebody line body
lineref line reference
lname local name
lnamind local name indirection
lockargument LOCK argument
logicalop logical operator
ls label separator
lvn local variable name
mant mantissa
mergeargument MERGE argument
mnemonicspace mnemonic space
mnemonicspacename mnemonic space name
mnemonicspec mnem onic space specifier
name name
namevalue name value
newargument NEW argument
newsvn NEW svn
noncomma non-comm a
nonquote non-quote (any graphic not

equal to quote)
nref name reference
numexpr expression, value

interpreted numerically
num lit numeric literal
openargument OPEN argument
openparameters OPEN param eters
packagename package name
patatom pattern atom
patcode pattern code
patnonY pattern non Y
patnonYZ pattern non Y or Z
patnonZ pattern non Z
pattern pattern
place place
postcond post condition
processid process identifier
processparam eters process param eters
readargument READ argument

76 M Programming Language ANSI X11.1 Canvass Version 1

readcount READ count
relation relational operator
repcount repeat count in patatom
restartargument restart argument
rexpratom restricted expression atom
rgvn restricted global v ariable

name
rlvn restricted local v ariable

name
routine routine
routinebody routine body
routinehead routine head
routinename routine name
routineref routine reference
routinexpr routine expression
setargument SET argument
setdestination SET destination
setev SET error v ariable
setextract SET $EXTRACT
setleft SET left
setpiece SET $PIECE
SP space character
ssvn structured system variable

name
stackcode $STACK code
stackcodexpr $STACK code expression
strlit string literal
sublit subscript literal
subnonquote subscript non-quote
svn special variable name
system system
systemexpr system expression
textarg $TEXT argum ent
timeout time-out specification
transparam eters transaction parameters
truthop truth operator
tsparam TSTART parameter
tstartargument TSTART argument
tvexpr expr, v alue interpreted as a

truth-value
unaryop unary operator
useargument USE argument
V value (evaluates to)
writeargument W RITE argument
xargument EXECUTE argument

ANS I X11.1 Canvass Version 1 M Programming Language 77

Annex D (Informative)

Embedded SQL

SQL2 prov ides a capability for supporting embedded SQL M program s. The specif ication for this is
described in ANSI X3.135 (ISO/IEC 9075, 1992) and is partially reproduced here for information
purposes. The reader should refer to ANSI X3.135 Section 19 Embedded SQL for the full definition.

--

"19.1 <embedded SQL host program>
...

Syntax Rules

1) An <embedded SQL host program> is a compilation unit that consists of programm ing
language text and SQ L text. The program ming language text shall conform to the requirem ents
of a specif ic standard programming language. The SQ L text shall consist of one or m ore
<embedded SQ L statem ent>s and, optionally, one or m ore <em bedded SQ L declare section>s,
as defined in this standard.

2) An <embedded SQL statement>, <em bedded SQL begin declare>, or <em bedded SQL end
declare> that is contained in an <embedded SQL MUMPS program> shall contain an <SQL
prefix> that is "<ampersand>SQ L<open paren>". There shall be no <separator> between the
<ampersand> and "SQL" nor between "SQL" and the <open paren>.
...

3) ...

An <em bedded SQL statement>, <em bedded SQL begin declare>, or <em bedded SQL end
declare> that is contained in an <embedded SQL MUMPS program> shall contain an <SQL
terminator> that is a <close paren>.

4) The <token>s comprising an <SQL prefix>, <embedded SQL begin declare>, or <em bedded
SQL end declare> shall be separated by <space> characters and be specified on one line.
Otherwise, the rules for the continuation of lines and tokens from one line to the next and for the
placement of host language comm ents are those of the programm ing language of the containing
<embedded SQL host program>.

...

19.7 <embedded SQL MUMPS program>

Function

Specify an <em bedded SQL MUMPS program>

Format

<embedded SQL MMUMPS program> ::= ! ! See the Syntax Rules.

<MUMPS host identi fier> ::= ! ! See the Syntax Rules.

<MUMPS variable def inition> ::=
 { <MUM PS num eric variable> | <MUMPS character variable> } <semicolon>

<MUMPS character v ariable> ::=
 VARCHAR <MUMPS host identifier> <MUM PS length specification>
 [{ , <MUMPS host identifier> <MUMPS length specification> }...]

<MUMPS length specif ication> ::=
<open paren> <length> <close paren>

<MUMPS num eric variable> ::=
 { INT
 | DEC [{ <precisions> [, <scale>])]

78 M Programming Language ANSI X11.1 Canvass Version 1

 | REAL }
 <MUMPS host identifier> [{ , <M UMPS host identifier> }...]

Syntax Rules

1) An <embedded SQL MUMPS program> is a compilation unit that consists of MUMPS text
and SQL text. The MUMPS text shall conform to standard MUMPS. The SQL text shall consist of
one or more <embedded SQL statement>s and, optionally, one or more <embedded SQL
declare section>s.

2) A <MUMPS host identifier> is any valid MUMPS variable nam e. A <MUMPS host identifier>
shall be contained in an <embedded SQL MUMPS program>.

3) An <embedded SQL statement> m ay be specified wherever a MUMPS com mand may be
specified.

4) A <M UM PS variable def inition> def ines one or m ore host v ariables.

5) The <MUMPS character variable> defines a variable-length string. The equiv alent SQ L data
type is VARCHAR whose maximum length is the <length> of the <MUMPS length specif ication>.

6) INT describes an exact numeric variable. The equivalent SQL data type is INTEGER.

7) DEC describes an exact numeric variable. The <scale> shall not be greater than the
<precision>. The equivalent SQL data type is DECIMAL with the same <precision> and <scale>.

8) REAL describes an approximate numeric variable. The equivalent SQL data type is REAL.

9) An <embedded SQL MUMPS program> shall contain either a variable named SQLCODE
defined with a datatype of INT or a v ariable nam ed SQ LSTATE def ined with a datatype that is
VARCHAR with length 5, or both.

Note: SQLSTATE is the preferred status parameter. The SQLCODE status parameter is a
deprecated feature that is supported for compatibility with earlier versions of this standard. See
Annex D, "Deprecated Features".

..."

ANS I X11.1 Canvass Version 1 M Programming Language 79

Annex E (informative)

Routine Identification - First Line Convention

The first line of every routine shall be used for documentation.

The format is:

 label ls ; [owner] [; [date] [; description] ...]

where

 owner ::= [contact] [pkgpgm]

 contact ::= routeaddr
NOTE: As defined by INTERNET RFC 822. Quoted strings are not
permitted.

 pkgpgm ::= L prg

 T T
 * ident *
 * digit *
 prg ::= * - * ... (Note: hyphen)
 * _ * (Note: underscore)
 * % * (Note: percent)
 R R

 date ::= year month day [hour minute [sec] [zoneoffset]]

 year ::= digit digit digit digit

 month ::= digit digit

 day ::= digit digit

 hour ::= digit digit

 minute ::= digit digit

 sec ::= digit digit

 * Z *
 zoneoffset ::= * * + * *
 * * - * hour minute *

 description ::= any of the characters in graphic except the semicolon.

Sem antic description:

The first line is a formatted M comment line labeled with the name of the routine. The contact is an
electronic mail address for complaints, suggestions, or questions. The pkgpgm list is used to classify the
"position" of the routine in the package/program hierarchy. prgs are listed from left-to-right as most- to
least-significant.

The date is in local time unless a zoneoffset is given. A zoneoffset of "Z" implies (Zulu) GMT and a
numeric valued zoneoffset is the differential to local time from GMT.

The label, ls, and first sem icolon are required. The other three f ields are optional as long as their
semicolon position relative to the others is maintained.

Exam ples:

DR2 ;UTILITY;DR;DRS;19761115;DATE READ
TAG ;<MAIL-MAN@VA.GOV>,JUNK;;EXAMPLE OF OMITTED FIELDS
M ;
RTN ;ABC,DEF,XYZ,GROUP;19760704;SCAN PAST; IN USER INPUT

80 M Programming Language ANSI X11.1 Canvass Version 1

NOTE: This standard does not affect the language specification.

ANS I X11.1 Canvass Version 1 M Programming Language 81

Annex F (informative)

Transportability of M Software Systems

The transfer of routines between machine env ironments is affected by numerous machine and operating
systems factors. A standard transfer format for both routines and data stored within globals cannot at the
same time easily cope with the simple and the complex case efficiently, in addition to dealing with the
env ironm ental idiosyncrasies. Therefore, the responsibility for the detailed form at is left to the transferor.

1 Routine Transfer Format

The routine loader routine shall hav e a form that will load the routines from the transfer m edium and will
save it in internal format. The save routine creating the transfer medium shall produce the following
routine transfer format:

Header-line-1 eol
Header-line-2 eol
routinehead
routine-line eol
.
.
.
eol
routinehead
routine-line eol
.
.
.
eol
[***RTN END***] eol

In the above structure, routine-line is a string in a format as returned by $TEXT. The two header lines
shall be free tex t and m ay conta in any m essage the sender wishes to convey to the receiver.

NOTE: Each routine is separated by a blank line (an eol) from the following one. Optionally, either two
successive blank lines or the string "***RTN END***" denotes the end of the file. Eol is defined to be a
logical end-of-line record as m utually def ined by the sending and receiv ing env ironments.

2 Global Dump Formats

The global loader shall read and the global dumper shall produce on the transfer medium the following
transfer form at:

Header-line-1 eol
Header-line-2 eol
Full global reference eol
Data contents eol
.
.
.
Full global reference eol
Data contents eol
eol
[***GBL END***] eol

Eol is defined to be a logical end-of-line record as mutually defined by the sending and receiving
env ironments.

The full global reference shall conform to a global variable name specification as defined by ANSI/MDC
X11.1-1994 section 1, subclause 7.1.2.4. W hen data contains ASCII control characters, decimal (0-
31,127), the user shall be responsible for handling the accurate reconstruction of the data string in the
host env ironm ent. Subscripts in the full global reference shall not contain the ASCII control characters
decimal 0-31 or 127. Optionally, either two successive blank lines or the string "***GBL END***" denotes
the end of the file.

3 Transfer Media

If the medium is magnetic tape, it should preferably be 1/2" industry standard 9 track (unlabelled and

82 M Programming Language ANSI X11.1 Canvass Version 1

with the ASCII character set). The eighth bit (i.e., most significant bit) shall be set to zero when
transferring 7 bit data. The physical block size shall be preferably 1024 characters but may be any
clearly designated integer multiple of this size and preferably use the ANSI X3.27-1987 "D" (unspanned
variable length records) form at. The reel size should preferably be 7".

Tapes recorded at either 800 bpi, NRZI (ANSI X3.22-1990) or 1600 or 6250 bpi phase-encoded (ANSI
X3.39-1992) are recom mended for current systems.

ANS I X11.1 Canvass Version 1 M Programming Language 83

Annex G (informative)

X3.64 Controlmnemonics

Control- Control-
mnem onic Control Function mnem onic Control Function

APC Application Program Com mand
CBT Cursor Backward Tabulation
CCH Cancel Character
CHA Cursor Horizontal Absolute
CHT Cursor Horizontal Tabulation
CNL Cursor Next Line
CPL Cursor Preceding Line
CPR Cursor Position Report
CTC Cursor Tabulation Control
CUB Cursor Backward
CUD Cursor Down
CUF Cursor Forward
CUP Cursor Position
CUU Cursor Up
CVT Cursor Vertical Tabulation
DA Dev ice Attributes
DAQ Define Area Qualification
DCH Delete Character
DCS Dev ice Control String
DL Delete Line
DMI Disable Manual Input
DSR Dev ice Status Report
EA Erase in Area
ECH Erase Character
ED Erase in Display
EF Erase in F ield
EL Erase in Line
EMI Enable Manual Input
EPA End of Protected Area
ESA End of Selected Area
FNT Font Selection
GSM Graphic Size Modification
GSS Graphic Size Selection
HPA Horizontal Position Absolute
HPR Horizontal Position Relative
HTJ Horizontal Tab with Justify
HTS Horizontal Tabulation Set
HVP Horizontal and Vertical Position
ICH Insert Character
IL Insert Line
IND Index
INT Interrupt
JFY Justify
MC Media Copy
MW Message W aiting
NEL Next Line
NP Next Page
OSC Operating System Command
PLD Partial Line Down
PLU Partial Line Up
PM Privacy Message
PP Preceding Page
PU1 Private Use One
PU2 Private Use Two
QUAD QUAD
REP Repeat
RI Reverse Index
RIS Reset to Initial State
RM Reset Mode
SEM Select Editing Extent Mode
SGR Select Graphic Rendition

SL Scroll Left
SM Set Mode
SPA Start of Protected Area
SPI Spacing Increment
SR Scroll Right
SS2 Single Shift Two
SS3 Single Shift Three
SSA Start of Selected Area
ST String Terminator
STS Set Transmit State
SU Scroll Up
TBC Tabulation Clear
TSS Thin Space Specification
VPA Vertical Position Absolute
VPR Vertical Position Relative
VTS Vertical Tabulation Set

84 M Programming Language ANSI X11.1 Canvass Version 1

Annex H (informative)

charset JIS90

(This is a partial English reproduction of the JIS90 charset. The reader should refer to JIS X0201-1990
and JIS X0208-1990 for the full definition.)

1. charset JIS90

The charset JIS90 is defined using the JIS X0201-1990 8-bit Code and the JIS X0208-1990 2-Byte ode
for Information Interchange.

2. JIS X0201-1990

In JIS X0201-1990, the values of decimal and character are the same as those from ASCII (X3.4-1990)
in the range between decimal 0-127, except decimal 92 which represents "¥" (yen) instead of "\" and
Decim al 126 which represents "

_
" (overline) instead of "~" (tilde).

The patcodes defined in charset M as A, C, E, L, N, P, and U apply in the same way in the range of
decimal 0-127.

In the decim al range between 161 and 223, the values represent 8-bit katakana characters.

3. JIS X0208-1990

In JIS X0208-1990, the relation of decim al and character is obtained as following. Let C 1 and C2 be the
decimal values of the 1st byte and the 2nd byte code for character, then the range of decimal code for
both C1 and C2 is [33,127] and the decimal v alue of the character is C1*256+C2. Let n be a decimal and
if there is no character assigned for n in JIS X0208, then $C(n) is a space as exemplified by $C(8481).

4. Pattern Codes

Patcodes E and (ka, $C(182)) apply for the characters in the decim al range 161-223. Patcodes E and
(zen, $C(16692)) apply for the characters in the decimal range 8481-32382.

5. Characters used in names

Characters in the charset JIS90 except $C(8481) m ay be defined as ident.

6. Collation

The collation scheme of charset JIS90 is ordered by the $A value of the character, whitin each of JIS
X0201-1990 and X0208-1990.

ANS I X11.1 Canvass Version 1 M Programming Language 85

Index
$ASCII 17, 29, 41
$CHAR 29
$DATA 19, 20, 29, 32, 54-56, 72
$DEVICE 24, 27, 61, 66
$ECODE 10, 11, 16, 25, 61, 63
$ESTACK 10, 25, 57
$ETRAP 10, 25, 57, 61, 63
$EXTRACT 29, 30, 35, 41, 62
$FIND 30, 35, 41
$FNUMBER 30
$GET 32
$HOROLOG 26
$IO 26, 49, 58, 65
$JOB 20, 26, 74
$JUSTIFY 32, 62
$KEY 26, 61
$LENGTH 30, 32, 35, 41, 62
$NAME 33, 82
$ORDER 33, 34, 41, 69
$PIECE 34, 62
$PRINCIPAL 26
$QLENGTH 35
$QSUBSCRIPT 35
$QUERY 36, 69
$QUIT 26
$RANDOM 36, 82
$REVERSE 36
$SELECT 37, 82
$STACK 10, 11, 25, 26, 37, 63
$STO RAG E 26
$SYSTEM 2, 20, 26, 71
$TEST 10, 15, 23, 26, 45, 50, 53, 56,

58, 60
$TEXT 38, 45, 46
$TLEVEL 9-11, 24, 26, 52, 59, 63, 64
$TRANSLATE 38
$TRESTART 10, 24, 27, 63
$VIEW 39
$X 27, 60, 61, 63, 65, 66, 71
$Y 27, 60, 61, 63, 65, 66, 71
$Z 27, 39
** 40
^$CHARACTER 7, 17
^$DEVICE 18, 58
^$GLOBAL 18
^$JOB 19, 20
^$LOCK 19
^$ROUTINE 19
^$SYSTEM 20
^$Z 20
Action 31
Actual 47, 48, 50, 53, 82
Actuallist 23, 44, 47-50, 53
Actualname 47, 48
Addition 70
Algoref 17-19
Alpha 58
Alternation 42
And operator (&) 41
Argument 6, 44

indirection 44
QUIT 48, 59

Argum ents 6
Arithmetic Binary Operators 39, 40
Arithmetic Operations 70
Array 12-14
ASCII 6, 7, 29, 60, 66, 70, 71, 80
Binaryop 39
Blocks 49

BREAK 48
Call-by-reference 47
Call-by-value 47, 53
Case

Lower 16
Upper 16

case sensitivity 6, 24, 28, 42, 43, 69
Character set profile 80
Charset 7, 17-20, 29, 33, 34, 42, 67,

80, 81, 92
Charsetexpr 7, 17-20
CLOSE 49, 58
Closeargument 49
Codes

$FNUMBER 31
Pattern matching 42

Collation 92
Com mand 7-11, 23, 37, 38, 43-46, 48,

49, 50-53, 56-58, 61,
63, 64, 71, 82

Com mand argument indirection 6, 44
Com mand structure 8, 43, 71
Com mands 7, 8, 71
Com mandword 10, 37, 43-45, 67
Com mas 25
Com ment 7, 8, 44
Com mit 9, 63
Com plex Num bers 40
Concatenation operator (_) 39, 40
Conditional commands

ELSE 50
FOR 50
IF 53
post 45

Contains operator 40
Contains operator ([) 41
CONTEXT-STRUCTURE 9, 10
Control 7
Control-sequences 60
Controlmnem onic 58, 65, 66, 73
CR 6-8, 66
Cs 8
Current Device 24, 26, 49, 58, 60, 65
Data type 12
Data values

Num eric 69
DATA-CELL 13-15, 29, 30, 47, 48, 54
Defining occurrence 8, 46
Definition 24
Descendant 56
Descendants 13, 29, 54
Dev ice 18

Current 24, 66
Dev iceattribute 18, 49, 58
Dev icekeyword 49, 58
Dev iceparam 49
Dev iceparameter 49
Dev iceparameters 49, 58, 65
Dev ices 73
Dev icexpr 18
Difference operator (-) 39, 40
Digit 6, 7, 21, 58, 66
Div ision operator (/) 41
Dlabel 38, 46
DO 8, 9, 13, 44-47, 49, 52, 59, 67
Doargument 8, 15, 44, 48-50, 59
Ecode 8, 10, 16, 20, 23, 25, 31, 33, 36,

37, 38-40, 42, 44, 46,
47, 48, 50-53, 55, 56,

86 M Programming Language ANSI X11.1 Canvass Version 1

58, 59, 60, 63, 64
ELSE 9, 50, 53
Em bedded

SQL 85
Em bedded programs 11
Em pty string 12, 15, 21, 26, 32-34, 38,

41
Em pty strings 69
Em pty value 49
Em ptystring 17
Endless loops 52
Entryref 38, 45, 46, 49, 50, 52, 53
Env ironment 15, 16, 20, 28, 33, 35, 38,

46, 55, 70, 74, 82
Eoffset 38
Eol 7, 8, 10, 11, 38, 44, 51, 67, 71
Eor 7, 9, 48, 50, 59
Equality 22, 41
Equals operator (=) 40, 41
Erroneous 33
Error 8, 70
Errors 31, 39, 46
Evaluation 6

command argument 6, 45
expression 6, 39, 67
indirection 6, 44
naked indicator 16
parameters 47

Exampleargum ent 6
Exam plecomm and 6
Execution 9
Execution level 8, 23, 50, 52, 59
Exfunc 8, 9, 15, 21, 23, 26, 37, 44, 46,

47, 48, 50, 59, 60
Exp 21, 22
exponentiation 39, 40, 70
Expr 6, 11, 12, 15-21, 23, 28-30, 32,

34, 35, 36-39, 47, 48,
49, 51, 53, 55, 57-67,
73

Expratom 6, 11, 12, 15, 21, 27, 28, 38,
39, 41, 44-47, 49, 50,
52, 53-58, 60, 61, 64,
65, 66

Expression 69
Expressions 11, 71, 73
Expritem 12, 13, 21
Exprtail 11, 39
Externalroutinename 47, 69
Externref 17, 23, 47-50
Extid 11
Extrinsic

functions 9, 13, 23, 45
variables 9, 13, 23, 45

Extsyntax 8, 11
Exttext 11
Exv ar 8, 9, 15, 21, 23, 26, 37, 44, 46,

47, 48, 50, 59, 60
FF 6, 7, 66
Fncodatom 30, 31, 82
Fncode 30, 31
Fncodexpr 30, 31
Fncodp 31
Fncodt 31
Follows operator (]) 40, 41
FOR 9, 13, 48, 50, 59
Formalline 7, 8, 23, 44, 46, 47, 50, 53
Formallist 7, 8, 10, 23, 24, 47, 48, 50,

53, 59, 82
Format 27, 58, 60, 65, 66, 73

Forparameter 50-52
Forparameters 52
Function 21, 28, 29, 46
Functionname 17, 28
Global variable 12, 13
Global variables 69
Glv n 12, 26, 28-30, 32-34, 36, 54, 56,

60, 61-63
Gnam ind 15, 16
GO TO 9, 10, 45, 46, 52
Gotoargument 52
Graphic 7, 8, 11, 21, 25
Greater than operator 40
Greater than operator (>) 40
Gv n 12, 15, 16, 18-20, 33, 35, 36, 39,

82
Gv nexpr 18, 19
HALT 52, 59

implicit 59
HANG 53, 74
Hangargument 53
Ident 6, 7, 17, 42, 58, 66, 69, 80, 92
IF 9, 26, 53
Ifargument 53
Indicator

Naked 16, 32, 56, 63
Indirection 44, 51, 71, 72

command argument 6, 44
name 12, 15, 46, 47, 54, 55
pattern 41
subscript 13, 16

Integer division operator (\) 39, 40
Integer interpretation 23
Interpretation

integer 23, 40, 70
numeric 23, 28, 40, 70
truth-value 23, 28, 41, 70

Intexpr 23, 29-33, 35-38, 46, 60, 61,
63, 65, 66

Intlit 8, 21, 22, 38, 42, 46, 71
JIS90 92
JOB 26, 45, 46, 53
Jobargument 44, 48, 53, 54, 59
Jobparameters 53
Katakana 92
KILL 13, 15, 16, 48, 54

implicit 48
Killargument 54
L 6, 8, 12, 15, 25, 29, 37, 44, 47, 49,

50, 52-58, 60, 61, 64,
65, 66, 73

Label 7, 8, 24, 38, 45-47, 67
label offsets 38, 47
Labelref 17, 20, 23, 24, 45-50, 53
Labels 71
Leftexpr 61
Leftrestricted 61
Less than operator 40
Less than operator (<) 40
Level

execution 8, 50, 52, 59
indicator 7
line 7, 8, 50, 52
precedence 39

Levelline 7, 8, 23
LF 6-8, 66
Li 3, 4, 7, 8
Line 3, 7-9, 37, 38, 44-46, 48-53, 71
Line references 8, 45
Linebody 8

ANS I X11.1 Canvass Version 1 M Programming Language 87

Lineref 45, 46, 82
Lines 71
Lname 54, 57, 64
Lnamind 12, 13
Local variable 12, 13, 60
Local variables 69, 72
LOCK 9, 26, 45, 54, 55, 64
LOCK-LIST 9, 52, 55
LOCK-UNIVERSE 55
Lockargument 54-56
Lockspace 55
Logical operators 41
Logicalop 40, 41
Lower Case 16
Ls 7, 8, 10, 11, 44, 48, 50, 67
Lvn 12-15, 39, 48, 50-52, 60, 82
M

charset 80
Mant 21, 22
MCODE 37
MERGE 43, 56
Mergeargument 56
Metalanguage 6
Minus operator (-) 22, 27
Mnem onicspace 18, 49, 58, 60, 65, 66,

73
Mnem onicspacename 58
Mnem onicspec 58
Modulo 70
Modulo operator (#) 39, 40
Multiplication 70
Naked indicator 16, 32, 56, 62, 63
Naked reference 16, 28, 33
Nam e 6-8, 12-17, 19, 20, 23, 24, 28,

29, 47-50, 54, 55, 59,
67, 69-71, 80

Nam e indirection 12, 46, 47, 54, 55
NAME-TABLE 10, 13, 14, 29, 48, 54
Nam es 69
Nam evalue 28, 33, 35, 36, 73
Nesting 72

levels 71
NEW 12, 13, 15, 25, 48, 52, 57

implicit 48
NEW frames 52
Newargument 57
Newsvn 57
Noncomma 25
Nonquote 21
Not operator (') 27, 39-41, 43
Nref 9, 19, 20, 52, 54-56
Num eric Data Values 21, 69
Num eric expression evaluation 31
Num eric Interpretation 22, 23
Num eric relations 40
Num expr 23, 30-32, 45, 51, 53
Num lit 21-23, 28, 69, 70
OPEN 26, 45, 49, 57, 65
Openargument 57, 58
Openparameters 57, 58
Operand 40
Operator 6

metalanguage 6
Operators 39, 70

arithmetic 39
concatenation 40
pattern match 41
precedence of 39
relational 40
truth-value 27

unary 27
Or operator (!) 41
Order of evaluation 9, 28, 37, 39, 44,

47, 50, 51, 65
Ordering Sequence 34, 41
OVERLAP 55
Ownership

device 58
Ownership of devices 49
Packagename 47
Parameter 73
Parameter passing 12-15, 23, 46-48, 50
Pass-by-reference 47
Pass-by-value 47, 53
Patatom 41, 42
Patcode 18, 42, 67, 80, 92
PatnonY 42
PatnonYZ 42
PatnonZ 42
Pattern 39, 41, 42
Pattern indirection 41
Pattern match operator (?) 39, 41
PLACE 37, 38
Plus operator (+) 22, 27
Post conditionals 45
Postcond 10, 44, 45, 48-50, 52-54, 56,

57, 58, 60, 61, 63-67
PRO CESS-STACK 9, 11, 14, 23, 26,

50, 59
Processid 19, 20, 74
Processparameters 19, 53
Product operator (*) 39, 40
Programs

embedded 11
QUIT 8, 9, 11, 23, 25, 26, 48, 50, 52,

58, 59
implicit 8, 50, 59

Quotient operator (/) 39, 40
Quotient operator (\)

integer 39, 40
READ 13, 26, 45, 58, 60, 73
Readargument 60
Readcount 60
Readcount. 60
Relation 40
Repcount 42
RESTART 9, 10, 27, 63

Transaction 10
Restartable 9
Restartargument 10, 64
Results 71
REVERSE 28
Rexpratom 12, 15
Rgvn 12, 13, 15, 16
Rlvn 12, 13
Rollback 9, 10, 16, 27, 52, 64
Routine 7, 8, 11, 12, 20, 38, 45-47

size 72
Routine execution 8
Routinebody 7, 8, 11
Routinehead 7
Routinename 7, 15, 19, 38, 45, 46
Routineref 20, 38, 46
Routines 72
Routinexpr 19, 20
Scope

Transaction 9, 56
Scoping 13, 48, 50

FOR 51
variable 57

88 M Programming Language ANSI X11.1 Canvass Version 1

SERIAL 64
Serializable 9
SET 11, 13, 25, 48, 56, 61

implicit 48
Setargument 61, 63
Setdestination 61, 63
Setev 61-63
Setextract 61, 62
Setleft 61-63
Setpiece 61, 62
Sorts After 41
Sorts after operator 40
SP 6-8, 38, 44, 48-50, 52-54, 56-58,

60, 61, 63-66
Space 6
Spaces 6, 31, 32, 66

in comm ands 44
Special variables 24
SQL 11, 85
Ssvn 12, 16, 20, 58, 74, 82
Stackcode 37, 38
Stackcodexpr 37
String operators 41
String relations 41
Strings 12, 21, 70
Strlit 21, 42, 60
Structured system v ariable 16
Sublit 28, 69, 70
Subnonquote 28
Subscript 12-16, 28, 29, 33, 34, 51, 54,

55, 61
Subscript indirection 13, 16
Subscripts 16, 69
Subtraction 70
Sum operator (+) 39, 40
Svn 20, 21, 24, 39, 57, 82
Sym bol table 13
Syntax 6, 24, 29, 43, 44, 47
System 20
Systemexpr 20
TCO MM IT 9, 27, 43, 63
Terminator 26
Textarg 38
Timeout 45, 53-56, 58, 60, 61
TRANSACTION 10, 26, 63, 64, 73
Transaction Processing 9, 73
TRANSACTIONID 64
Transparameters 9, 64
TRESTART 9, 43, 63
TRO LLBACK 9, 11, 43, 64
Truth-value 24
Truth-Value Interpretation 23, 28, 37
Truthop 39, 40
Tsparam 64
TSTART 9, 10, 26, 43, 59, 64, 73
Tstartargument 10, 64
Tstartkeyword 64
Tvexpr 23, 37, 45, 49, 50, 52, 53, 67
Unary operators 27
Unaryop 21, 27
Undefined 13, 14
Upper case 16
USE 49, 65, 66
Useargument 65
V 6, 12, 15, 17-20, 30, 37, 38, 41, 44,

46, 47, 49, 52-58, 60,
61, 64-66

VALUE-TABLE 13, 14
Values

arithmetic 70

Variable 12, 29, 32
global 12
local 12, 13, 60, 72

Variables
global 69
local 69
special 71

VIEW 65
W RITE 58, 60, 65, 73
W riteargument 60, 65
Xargument 15, 48, 50, 59, 66, 67
XECUTE 9, 66, 72
Z 67

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96

